A Hybrid CNN for Image Denoising

Menghua Zheng, Keyan Zhi, Jiawen Zeng, Chunwei Tian, Lei You
{"title":"A Hybrid CNN for Image Denoising","authors":"Menghua Zheng, Keyan Zhi, Jiawen Zeng, Chunwei Tian, Lei You","doi":"10.37965/jait.2022.0101","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks (CNNs) with strong learning abilities have been used in the field of image super-resolution. However, some CNNs depends on a single deep network to training an image super-resolution model, which will have poor performance in complex screens. To address this problem, we propose a hybrid denoising CNN (HDCNN). HDCNN is composed of a dilated block (DB), RepVGG block (RVB) and feature refinement block (FB), a single convolution. DB combines a dilated convolution, batch normalization (BN), common convolutions, activation function of ReLU to obtain more context information. RVB uses parallel combination of convolution and BN, ReLU to extract complementary width features. FB is used to obtain more accurate information via refining obtained feature from the RVB. A single convolution collaborates a residual learning operation to construct a clean image. These key components make the HDCNN have good performance in image denoising. Experiment shows that the proposed HDCNN enjoys good denoising effect in public datasets.  ","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2022.0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Deep convolutional neural networks (CNNs) with strong learning abilities have been used in the field of image super-resolution. However, some CNNs depends on a single deep network to training an image super-resolution model, which will have poor performance in complex screens. To address this problem, we propose a hybrid denoising CNN (HDCNN). HDCNN is composed of a dilated block (DB), RepVGG block (RVB) and feature refinement block (FB), a single convolution. DB combines a dilated convolution, batch normalization (BN), common convolutions, activation function of ReLU to obtain more context information. RVB uses parallel combination of convolution and BN, ReLU to extract complementary width features. FB is used to obtain more accurate information via refining obtained feature from the RVB. A single convolution collaborates a residual learning operation to construct a clean image. These key components make the HDCNN have good performance in image denoising. Experiment shows that the proposed HDCNN enjoys good denoising effect in public datasets.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于图像去噪的混合CNN
深度卷积神经网络具有较强的学习能力,已被应用于图像超分辨率领域。然而,一些细胞神经网络依赖于单个深度网络来训练图像超分辨率模型,这在复杂屏幕中的性能较差。为了解决这个问题,我们提出了一种混合去噪CNN(HDCNN)。HDCNN由扩张块(DB)、RepVGG块(RVB)和特征细化块(FB)组成,单个卷积。DB结合了扩展卷积、批量归一化(BN)、公共卷积、ReLU的激活函数来获得更多的上下文信息。RVB使用卷积和BN、ReLU的并行组合来提取互补宽度特征。FB用于通过细化从RVB获得的特征来获得更准确的信息。单个卷积协同残差学习操作来构建干净的图像。这些关键部件使得HDCNN在图像去噪方面具有良好的性能。实验表明,所提出的HDCNN在公共数据集中具有良好的去噪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Detection of Streaks in Astronomical Images Using Machine Learning An Optimal BDCNN ML Architecture for Car Make Model Prediction A Bio-Inspired Method For Breast Histopathology Image Classification Using Transfer Learning Convolutional Neural Networks for Automated Diagnosis of Diabetic Retinopathy in Fundus Images Automated Staging and Grading for Retinopathy of Prematurity on Indian Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1