Automated Staging and Grading for Retinopathy of Prematurity on Indian Database

S. Kadge, S. Nalbalwar, A. B. Nandgaokar, P. Shah, V Narendran
{"title":"Automated Staging and Grading for Retinopathy of Prematurity on Indian Database","authors":"S. Kadge, S. Nalbalwar, A. B. Nandgaokar, P. Shah, V Narendran","doi":"10.37965/jait.2023.0235","DOIUrl":null,"url":null,"abstract":"Retinopathy of prematurity (ROP) is a disorder of the retina in neonates. If ROP is not treated at early stage, neonates’ vision is affected, leading to blindness. It is necessary to diagnose and treat ROP at earliest. Several ROP assessment techniques based on Image analysis have been introduced in recent years. These studies identify only normal, abnormal and plus disease. This research article explores the identification of distinct ROP stages along with normal and abnormal detection. Detecting the stages will help to expedite the treatment and prevent vision loss. The proposed framework consists of feature extraction using Scale Invariant Feature Transform (SIFT) and Pyramid Histogram of Words (PHOW) techniques. Three efficient supervised machine learning algorithms, namely random forest (RF), support vector machine (SVM) and extreme boosting gradient (XGBoost), are used to classify different stages of ROP. A data set captured by RetCam 3 is used to evaluate the model. Based on rigorous evaluation, the accuracy of different ROP stages is 93.68%, 83.33%, 85.71%, 55.55% and 100% for normal, stage 1, 2, 3 and 4, respectively.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2023.0235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retinopathy of prematurity (ROP) is a disorder of the retina in neonates. If ROP is not treated at early stage, neonates’ vision is affected, leading to blindness. It is necessary to diagnose and treat ROP at earliest. Several ROP assessment techniques based on Image analysis have been introduced in recent years. These studies identify only normal, abnormal and plus disease. This research article explores the identification of distinct ROP stages along with normal and abnormal detection. Detecting the stages will help to expedite the treatment and prevent vision loss. The proposed framework consists of feature extraction using Scale Invariant Feature Transform (SIFT) and Pyramid Histogram of Words (PHOW) techniques. Three efficient supervised machine learning algorithms, namely random forest (RF), support vector machine (SVM) and extreme boosting gradient (XGBoost), are used to classify different stages of ROP. A data set captured by RetCam 3 is used to evaluate the model. Based on rigorous evaluation, the accuracy of different ROP stages is 93.68%, 83.33%, 85.71%, 55.55% and 100% for normal, stage 1, 2, 3 and 4, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度数据库中早产视网膜病变的自动分期和分级
早产儿视网膜病变(ROP)是一种新生儿视网膜疾病。若不及早治疗,会影响新生儿的视力,导致失明。早期诊断和治疗ROP是必要的。近年来介绍了几种基于图像分析的机械钻速评估技术。这些研究只识别正常、异常和附加疾病。本文探讨了不同ROP阶段的识别以及正常和异常的检测。检测这些阶段将有助于加快治疗并防止视力丧失。该框架包括使用尺度不变特征变换(SIFT)和单词金字塔直方图(PHOW)技术的特征提取。采用随机森林(random forest, RF)、支持向量机(support vector machine, SVM)和极限提升梯度(extreme boosting gradient, XGBoost)三种高效的监督式机器学习算法对不同阶段的ROP进行分类。使用RetCam 3捕获的数据集对模型进行评估。经严格评价,正常、1、2、3、4阶段的ROP准确率分别为93.68%、83.33%、85.71%、55.55%和100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Detection of Streaks in Astronomical Images Using Machine Learning An Optimal BDCNN ML Architecture for Car Make Model Prediction A Bio-Inspired Method For Breast Histopathology Image Classification Using Transfer Learning Convolutional Neural Networks for Automated Diagnosis of Diabetic Retinopathy in Fundus Images Automated Staging and Grading for Retinopathy of Prematurity on Indian Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1