COHERENT at the Spallation Neutron Source

IF 9.1 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Annual Review of Nuclear and Particle Science Pub Date : 2021-11-13 DOI:10.1146/annurev-nucl-101918-023518
P. Barbeau, Y. Efremenko, K. Scholberg
{"title":"COHERENT at the Spallation Neutron Source","authors":"P. Barbeau, Y. Efremenko, K. Scholberg","doi":"10.1146/annurev-nucl-101918-023518","DOIUrl":null,"url":null,"abstract":"The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory provides an intense, high-quality source of neutrinos from pion decay at rest. This source was recently used for the first measurements of coherent elastic neutrino–nucleus scattering (CEvNS) by the COHERENT Collaboration, which resulted in new constraints of physics beyond the Standard Model. The SNS neutrino source will enable further CEvNS measurements, exploration of inelastic neutrino–nucleus interactions of particular relevance for understanding supernova neutrinos, and searches for accelerator-produced sub-GeV dark matter. Taking advantage of this unique facility, COHERENT's suite of detectors in Neutrino Alley at the SNS is accumulating more data to address a broad physics program at the intersection of particle physics, nuclear physics, and astrophysics. This review describes COHERENT's first two CEvNS measurements, their interpretation, and the potential of a future physics program at the SNS. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-101918-023518","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory provides an intense, high-quality source of neutrinos from pion decay at rest. This source was recently used for the first measurements of coherent elastic neutrino–nucleus scattering (CEvNS) by the COHERENT Collaboration, which resulted in new constraints of physics beyond the Standard Model. The SNS neutrino source will enable further CEvNS measurements, exploration of inelastic neutrino–nucleus interactions of particular relevance for understanding supernova neutrinos, and searches for accelerator-produced sub-GeV dark matter. Taking advantage of this unique facility, COHERENT's suite of detectors in Neutrino Alley at the SNS is accumulating more data to address a broad physics program at the intersection of particle physics, nuclear physics, and astrophysics. This review describes COHERENT's first two CEvNS measurements, their interpretation, and the potential of a future physics program at the SNS. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
散裂中子源的相干
橡树岭国家实验室的散裂中子源(SNS)从静止的介子衰变中提供了一个强烈的、高质量的中微子源。该源最近被相干协作用于相干弹性中微子核散射(CEvNS)的首次测量,这导致了超出标准模型的新的物理约束。SNS中微子源将支持进一步的CEvNS测量,探索与理解超新星中微子特别相关的非弹性中微子-核相互作用,以及搜索加速器产生的亚gev暗物质。利用这一独特的设施,COHERENT在SNS中微子巷的探测器套件正在积累更多的数据,以解决粒子物理学、核物理学和天体物理学交叉领域的广泛物理项目。这篇综述描述了COHERENT的前两次CEvNS测量,它们的解释,以及SNS未来物理项目的潜力。预计《核与粒子科学年度评论》第73卷的最终在线出版日期为2023年9月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.50
自引率
0.80%
发文量
18
期刊介绍: The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation. One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.
期刊最新文献
High-Luminosity B Factory e+e− Colliders Multiwavelength and Multimessenger Counterparts of Fast Radio Bursts High-Field Magnets for Future Hadron Colliders Machine Learning for Design and Control of Particle Accelerators: A Look Backward and Forward Concepts for Neutrino Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1