Developing machine learning models for air temperature estimation using MODIS data

Q4 Agricultural and Biological Sciences AgriScientia Pub Date : 2022-06-30 DOI:10.31047/1668.298x.v39.n1.33225
G. Ovando, S. Sayago, M. Bocco
{"title":"Developing machine learning models for air temperature estimation using MODIS data","authors":"G. Ovando, S. Sayago, M. Bocco","doi":"10.31047/1668.298x.v39.n1.33225","DOIUrl":null,"url":null,"abstract":"Air temperature is a key variable in a wide range of environmental applications, including land–atmosphere interaction, climate change research and hydrology and crop growth models, among others. The objective of this study was to estimate daily maximum (Tmax) and minimum (Tmin) temperatures, based on MODIS AQUA/TERRA land surface temperature (LST), NDVI, extraterrestrial solar radiation and precipitation data. Artificial neural networks (ANN) and random forests (RF) models were developed to predict these temperatures covering weather stations in Córdoba (Argentina) for 2018-2020. The results show that RF and ANN machine learning algorithms are capable of modeling non-linear relationships between registered temperatures and LST MODIS data, in a very robust way. The validation of the models confirms that Tmax and Tmin can be accurately estimated using, jointly or separately, AQUA and TERRA LST. The best models present determination coefficients equal to 0.81/0.91 and root mean square error of 2.7/2.1 ºC for Tmax/Tmin, when using AQUA LST day/night satellite overpass time data, respectively. The robustness and confidence of the models developed, and the ease and free accessibility of input data at a global scale, suggest that these methodologies have the potential to be applied to other regions.","PeriodicalId":39278,"journal":{"name":"AgriScientia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriScientia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31047/1668.298x.v39.n1.33225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Air temperature is a key variable in a wide range of environmental applications, including land–atmosphere interaction, climate change research and hydrology and crop growth models, among others. The objective of this study was to estimate daily maximum (Tmax) and minimum (Tmin) temperatures, based on MODIS AQUA/TERRA land surface temperature (LST), NDVI, extraterrestrial solar radiation and precipitation data. Artificial neural networks (ANN) and random forests (RF) models were developed to predict these temperatures covering weather stations in Córdoba (Argentina) for 2018-2020. The results show that RF and ANN machine learning algorithms are capable of modeling non-linear relationships between registered temperatures and LST MODIS data, in a very robust way. The validation of the models confirms that Tmax and Tmin can be accurately estimated using, jointly or separately, AQUA and TERRA LST. The best models present determination coefficients equal to 0.81/0.91 and root mean square error of 2.7/2.1 ºC for Tmax/Tmin, when using AQUA LST day/night satellite overpass time data, respectively. The robustness and confidence of the models developed, and the ease and free accessibility of input data at a global scale, suggest that these methodologies have the potential to be applied to other regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发利用MODIS数据估算气温的机器学习模型
在广泛的环境应用中,气温是一个关键变量,包括陆地-大气相互作用、气候变化研究、水文学和作物生长模型等。本研究的目的是基于MODIS AQUA/TERRA陆地表面温度(LST)、NDVI、地外太阳辐射和降水数据估算日最高(Tmax)和最低(Tmin)温度。开发了人工神经网络(ANN)和随机森林(RF)模型来预测2018-2020年Córdoba(阿根廷)气象站的温度。结果表明,射频和人工神经网络机器学习算法能够以非常稳健的方式模拟登记温度与LST MODIS数据之间的非线性关系。模型的验证表明,无论是联合使用还是单独使用AQUA和TERRA LST,都可以准确地估算出Tmax和Tmin。当使用AQUA LST日/夜卫星立交桥时间数据时,最佳模型的Tmax/Tmin决定系数分别为0.81/0.91,均方根误差为2.7/2.1ºC。所开发模型的稳健性和可信度,以及全球范围内输入数据的便利性和可免费获取性表明,这些方法具有应用于其他区域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AgriScientia
AgriScientia Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊介绍: AgriScientia es una revista de acceso abierto, de carácter científico-académico, gestionada por el Área de Difusión Científica de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba, Argentina. La revista recibe artículos en los idiomas español e inglés. El objetivo de esta publicación es la difusión de los resultados de investigaciones de carácter agronómico. Está destinada a investigadores, estudiantes de pregrado, grado y posgrado, profesionales en el área de las ciencias agropecuarias y público en general interesado en las temáticas relacionadas. Su periodicidad es semestral. Los artículos se reciben durante todo el año. Los tipos de documentos que se publican son artículos científicos, comunicaciones y revisiones.
期刊最新文献
Assessment of land use change in the dryland agricultural region of Córdoba, Argentina, between 2000 and 2020 based on NDVI data Impacto ambiental de las aplicaciones de fitosanitarios en producciones ornamentales intensivas en el partido de Moreno, provincia de Buenos Aires Selección de cepas bacterianas con capacidad antifúngica contra fitopatógenos de alfalfa para constituir un consorcio bacteriano Evaluating Nitrogen Release Rates of Commercial Slow-Release Urea Products Using Brix Value Analysis: A Validation Study Comparing Two Methods Aportes a la morfología de semillas de Hibiscus cannabinus L. y ajuste de la prueba de tetrazolio para estimar viabilidad y vigor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1