Biochar Derived from Sesbania sesban Plant as a Potential Low-Cost Adsorbent for Removal of Methylene Blue

Q3 Environmental Science Environment and Natural Resources Journal Pub Date : 2022-09-14 DOI:10.32526/ennrj/20/202200119
Nguyen Trung Hiep, Ta Thi Hoai Thu, Lam Thi Thanh Quyen, Phan Dinh Dong, Tran Tuyet Suong, Thai Phuong Vu
{"title":"Biochar Derived from Sesbania sesban Plant as a Potential Low-Cost Adsorbent for Removal of Methylene Blue","authors":"Nguyen Trung Hiep, Ta Thi Hoai Thu, Lam Thi Thanh Quyen, Phan Dinh Dong, Tran Tuyet Suong, Thai Phuong Vu","doi":"10.32526/ennrj/20/202200119","DOIUrl":null,"url":null,"abstract":"In this study, biochar made from the Sesbania sesban plant, under slow pyrolysis at 300°C was used to adsorb methylene blue (MB) in aqueous solution. The biochar properties were clarified by diverse analytical methods such as FTIR, SEM, and BET. The results indicated that the surface of biochar was relatively smooth, had porous texture, and stacked evenly. In addition, the biochar had a large specific surface area of 561.8 m2/g and the pHpzc value was 6.9. The effect of adsorbent dosage, initial pH, contact time, and concentration of dye solution on biochar were investigated. The optimum conditions for MB adsorption were found at the MB concentration of 50 mg/L, initial pH of 11, biochar mass of 0.6 mg, and contact time of 30 min. Under these optimal conditions, MB dye removal efficiency was above 90%. Adsorption isotherm data were fitted with the Langmuir isotherm model (R2=0.897) suggesting the adsorption was monolayer, and its maximum adsorption capacity was about 6.6 mg/g. The adsorption kinetic models showed that the linear pseudo-second-order by R2=0.999 was well fitted. The results indicated the enormous potential of Sesbania sesban plant to produce biochar as a low-cost and rather high-effective adsorbent for dye removal from wastewater as well as water quality improvement.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/20/202200119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, biochar made from the Sesbania sesban plant, under slow pyrolysis at 300°C was used to adsorb methylene blue (MB) in aqueous solution. The biochar properties were clarified by diverse analytical methods such as FTIR, SEM, and BET. The results indicated that the surface of biochar was relatively smooth, had porous texture, and stacked evenly. In addition, the biochar had a large specific surface area of 561.8 m2/g and the pHpzc value was 6.9. The effect of adsorbent dosage, initial pH, contact time, and concentration of dye solution on biochar were investigated. The optimum conditions for MB adsorption were found at the MB concentration of 50 mg/L, initial pH of 11, biochar mass of 0.6 mg, and contact time of 30 min. Under these optimal conditions, MB dye removal efficiency was above 90%. Adsorption isotherm data were fitted with the Langmuir isotherm model (R2=0.897) suggesting the adsorption was monolayer, and its maximum adsorption capacity was about 6.6 mg/g. The adsorption kinetic models showed that the linear pseudo-second-order by R2=0.999 was well fitted. The results indicated the enormous potential of Sesbania sesban plant to produce biochar as a low-cost and rather high-effective adsorbent for dye removal from wastewater as well as water quality improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从田菁植物中提取的生物炭作为一种潜在的低成本吸附剂去除亚甲基蓝
在本研究中,以田菁为原料,在300℃慢速热解下制备生物炭,用于吸附水溶液中的亚甲基蓝(MB)。利用红外光谱(FTIR)、扫描电镜(SEM)和BET等多种分析方法对生物炭的性质进行了澄清。结果表明:生物炭表面较为光滑,具有多孔结构,堆积均匀;生物炭的比表面积为561.8 m2/g, pHpzc值为6.9。考察了吸附剂用量、初始pH、接触时间和染料溶液浓度对生物炭的影响。最佳吸附条件为:MB浓度为50 mg/L,初始pH为11,生物炭质量为0.6 mg,接触时间为30 min,在此条件下,MB染料去除率可达90%以上。吸附等温线数据符合Langmuir等温线模型(R2=0.897),表明吸附为单层吸附,最大吸附量约为6.6 mg/g。吸附动力学模型拟合良好,R2=0.999。研究结果表明,田菁植物生产生物炭作为一种低成本、高效的废水脱除染料和改善水质的吸附剂具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environment and Natural Resources Journal
Environment and Natural Resources Journal Environmental Science-Environmental Science (all)
CiteScore
1.90
自引率
0.00%
发文量
49
审稿时长
8 weeks
期刊介绍: The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology
期刊最新文献
Life Cycle Assessment of Slaughtered Pork Production: A Case Study in Thailand Assessment of Health Risk from Exposure to Respirable Particulate Matter (RPM) among Motorcycle Taxi Drivers in Bangkok and Adjacent Provinces, Thailand Role of Correlation among Physical Factors in Probabilistic Simulation of Emissions of Volatile Organic Compounds from Floating Storage and Offloading Vent Stack Landscape Ecological Structures and Patterns for Green Space Conservation in Forest Monasteries in Northeast Thailand Optimization of Diclofenac Treatment in Synthetic Wastewater using Catalytic Ozonation with Calcium Peroxide as Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1