Y. Inoue, Ayumi Nanri, F. Arce, G. L. See, T. Tanikawa, T. Yokogawa, Masashi Kitamura
{"title":"Preparation and Spectroscopic Characterization of Ternary Inclusion Complexes of Ascorbyl Palmitate and Urea with γ-Cyclodextrin","authors":"Y. Inoue, Ayumi Nanri, F. Arce, G. L. See, T. Tanikawa, T. Yokogawa, Masashi Kitamura","doi":"10.3390/chemengineering7020029","DOIUrl":null,"url":null,"abstract":"A three-component inclusion complex of ascorbyl palmitate (ASCP), urea (UR), and γ-cyclodextrin (γCD) with a molar ratio of 1/12 has been prepared for the first time using the evaporation method (EVP method) and the grinding and mixing method (GM method). Also, we investigated changes in the physicochemical properties of the three-component complexes. The powder X-ray diffraction (PXRD) measurements showed ASCP, UR, and γCD characteristic peaks in the physical mixture (PM) (AU (ASCP/UR = 1/12)/γCD = 1/2). In GM (AU (ASCP/UR = 1/12)/γCD = 1/1), new diffraction peaks were observed around 2θ = 7.5° and 16.6°, while characteristic peaks derived from EVP (ASCP/UR = 1/12) were observed at 2θ = 23.4° and 24.9°. On the other hand, new diffraction peaks at 2θ = 7.4° and 16.6° were observed in GM (1/2). In the differential scanning calorimeter (DSC) measurement, an endothermic peak at around 83 °C was observed in the GM (1/1) sample, which is thought to originate from the phase transition of urea from the hexagonal to the tetragonal form. An endothermic peak around 113.9 °C was also observed for EVP (ASCP/UR = 1/12). However, no characteristic phase transition-derived peak or EVP (ASCP/UR = 1/12)-derived endothermic peak was observed in GM (1/2). Near infrared (NIR) spectroscopy of GM (1/2) showed no shift in the peak derived from the CH group of ASCP. The peaks derived from the NH group of UR shifted to the high and low wavenumber sides at 5032 cm−1 and 5108 cm−1 in EVP (ASCP/UR = 1/12). The peak derived from the OH group of γCD shifted, and the peak derived from the OH group of ASCP broadened at GM (1/2). These results suggest that AU (ASCP/UR = 1/12)/γCD prepared by the mixed grinding method formed inclusion complexes at the molar ratio (1/2).","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7020029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
A three-component inclusion complex of ascorbyl palmitate (ASCP), urea (UR), and γ-cyclodextrin (γCD) with a molar ratio of 1/12 has been prepared for the first time using the evaporation method (EVP method) and the grinding and mixing method (GM method). Also, we investigated changes in the physicochemical properties of the three-component complexes. The powder X-ray diffraction (PXRD) measurements showed ASCP, UR, and γCD characteristic peaks in the physical mixture (PM) (AU (ASCP/UR = 1/12)/γCD = 1/2). In GM (AU (ASCP/UR = 1/12)/γCD = 1/1), new diffraction peaks were observed around 2θ = 7.5° and 16.6°, while characteristic peaks derived from EVP (ASCP/UR = 1/12) were observed at 2θ = 23.4° and 24.9°. On the other hand, new diffraction peaks at 2θ = 7.4° and 16.6° were observed in GM (1/2). In the differential scanning calorimeter (DSC) measurement, an endothermic peak at around 83 °C was observed in the GM (1/1) sample, which is thought to originate from the phase transition of urea from the hexagonal to the tetragonal form. An endothermic peak around 113.9 °C was also observed for EVP (ASCP/UR = 1/12). However, no characteristic phase transition-derived peak or EVP (ASCP/UR = 1/12)-derived endothermic peak was observed in GM (1/2). Near infrared (NIR) spectroscopy of GM (1/2) showed no shift in the peak derived from the CH group of ASCP. The peaks derived from the NH group of UR shifted to the high and low wavenumber sides at 5032 cm−1 and 5108 cm−1 in EVP (ASCP/UR = 1/12). The peak derived from the OH group of γCD shifted, and the peak derived from the OH group of ASCP broadened at GM (1/2). These results suggest that AU (ASCP/UR = 1/12)/γCD prepared by the mixed grinding method formed inclusion complexes at the molar ratio (1/2).