Using existing Argo trajectories to statistically predict future float positions with a transition matrix

IF 1.9 4区 地球科学 Q2 ENGINEERING, OCEAN Journal of Atmospheric and Oceanic Technology Pub Date : 2023-06-12 DOI:10.1175/jtech-d-22-0070.1
P. Chamberlain, L. Talley, M. Mazloff, E. van Sebille, S. Gille, T. tucker, M. Scanderbeg, Pelle E. Robbins
{"title":"Using existing Argo trajectories to statistically predict future float positions with a transition matrix","authors":"P. Chamberlain, L. Talley, M. Mazloff, E. van Sebille, S. Gille, T. tucker, M. Scanderbeg, Pelle E. Robbins","doi":"10.1175/jtech-d-22-0070.1","DOIUrl":null,"url":null,"abstract":"\nThe Argo array provides nearly 4000 temperature and salinity profiles of the top 2000 meters of the ocean every 10 days. Still, Argo floats will never be able to measure the ocean at all times, everywhere. Optimized Argo float distributions should match the spatial and temporal variability of the many societally important ocean features that they observe. Determining these distributions is challenging because float advection is difficult to predict. Using no external models, transition matrices based on existing Argo trajectories provide statistical inferences about Argo float motion. We use the 24 years of Argo locations to construct an optimal transition matrix that minimizes estimation bias and uncertainty. The optimal array is determined to have a 2°×2° spatial resolution with a 90 day timestep. We then use the transition matrix to predict the probability of future float locations of the Core Argo array, the Global Biogeochemical Array, and the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) array. A comparison of transition matrices derived from floats using Argos System and Iridium communication methods shows the impact of surface displacements, which is most apparent near the equator. Additionally, we demonstrate the utility of transition matrices for validating models by comparing the matrix derived from Argo floats with that derived from a particle release experiment in the Southern Ocean State Estimate (SOSE).","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0070.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 1

Abstract

The Argo array provides nearly 4000 temperature and salinity profiles of the top 2000 meters of the ocean every 10 days. Still, Argo floats will never be able to measure the ocean at all times, everywhere. Optimized Argo float distributions should match the spatial and temporal variability of the many societally important ocean features that they observe. Determining these distributions is challenging because float advection is difficult to predict. Using no external models, transition matrices based on existing Argo trajectories provide statistical inferences about Argo float motion. We use the 24 years of Argo locations to construct an optimal transition matrix that minimizes estimation bias and uncertainty. The optimal array is determined to have a 2°×2° spatial resolution with a 90 day timestep. We then use the transition matrix to predict the probability of future float locations of the Core Argo array, the Global Biogeochemical Array, and the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) array. A comparison of transition matrices derived from floats using Argos System and Iridium communication methods shows the impact of surface displacements, which is most apparent near the equator. Additionally, we demonstrate the utility of transition matrices for validating models by comparing the matrix derived from Argo floats with that derived from a particle release experiment in the Southern Ocean State Estimate (SOSE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用现有的Argo轨迹,通过过渡矩阵统计预测未来的浮动位置
Argo阵列每10天提供近4000个海洋顶部2000米的温度和盐度剖面。尽管如此,Argo浮标不可能随时随地测量海洋。优化后的Argo浮子分布应该与他们观察到的许多具有重要社会意义的海洋特征的时空变化相匹配。确定这些分布是具有挑战性的,因为浮子平流很难预测。在没有外部模型的情况下,基于现有Argo轨迹的过渡矩阵提供了关于Argo浮子运动的统计推断。我们使用24年的Argo位置来构建一个最优的过渡矩阵,以最小化估计偏差和不确定性。确定最佳阵列具有2°×2°空间分辨率,时间步长为90天。然后,我们使用过渡矩阵来预测核心Argo阵列、全球生物地球化学阵列和南大洋碳和气候观测与建模(SOCCOM)阵列未来漂浮位置的概率。用Argos系统和铱星通信方法对浮子的过渡矩阵进行比较,结果显示地表位移的影响,在赤道附近最为明显。此外,我们还通过比较Argo浮标得出的矩阵与南大洋状态评估(SOSE)中颗粒释放实验得出的矩阵,证明了过渡矩阵在验证模型中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
9.10%
发文量
135
审稿时长
3 months
期刊介绍: The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.
期刊最新文献
Synergistic retrievals of ice in high clouds from elastic backscatter lidar, Ku-band radar and submillimeter wave radiometer observations A Versatile Calibration Method for Rotary-Wing UAS as Wind Measurement Systems A Case of Idiopathic Intracranial Hypertension/Pseudotumor Cerebri Syndrome Cured by Myomectomy. Optimum Estimation of Coastal Currents Using Moving Vehicles Evaluation and Intercomparison of Small Uncrewed Aircraft Systems Used for Atmospheric Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1