{"title":"Measurement Error in a First-order Autoregression","authors":"P. Franses","doi":"10.47654/v24y2020i2p1-14","DOIUrl":null,"url":null,"abstract":"The Ordinary Least Squares (OLS) estimator for the slope parameter in a first-order autoregressive model is biased when the variable is measured with error. Such an error may occur with revisions of macroeconomic data. This paper illustrates and proposes a simple procedure to alleviate the bias, and is based on Total Least Squares (TLS). TLS is, in general, consistent, and also works well in small samples. Simulation experiments and an empirical example show the usefulness of this method.","PeriodicalId":38875,"journal":{"name":"Advances in Decision Sciences","volume":"24 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47654/v24y2020i2p1-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
The Ordinary Least Squares (OLS) estimator for the slope parameter in a first-order autoregressive model is biased when the variable is measured with error. Such an error may occur with revisions of macroeconomic data. This paper illustrates and proposes a simple procedure to alleviate the bias, and is based on Total Least Squares (TLS). TLS is, in general, consistent, and also works well in small samples. Simulation experiments and an empirical example show the usefulness of this method.