Utilising forensic tools to assist in chemical engineering capstone assessment grading

IF 3.5 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES Education for Chemical Engineers Pub Date : 2023-10-01 DOI:10.1016/j.ece.2023.08.001
Colin A. Scholes
{"title":"Utilising forensic tools to assist in chemical engineering capstone assessment grading","authors":"Colin A. Scholes","doi":"10.1016/j.ece.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The grading of assessments that consists of large calculations represents an odious task for educators, as they must verify the correct procedures and algorithms were used as well as ensure that the calculations have been done correctly. For engineering capstone design project assessments, these calculations represent spreadsheets, coding and ancillary calculations that can run to over a hundred pages. There is no meaningful way an educator can properly assess such material in the timeframe given for grading. As such, quantitative tools are needed that enable educators to rapidly evaluate calculation-based assessments. Forensic auditing tools were used here to evaluate calculation-based assessments associated with chemical engineering capstone design projects. These tools analyse how data within sets are presented, the structure of spreadsheets and tables, as well as statistical principles around numbers and their distribution within large data sets. This enables the rapid identification of features within students’ assessments that warrant further investigation to establish if the data has been manipulated or calculation errors exist. The analysis demonstrated that chemical engineering students’ reports can be analysed by forensic auditing tools. Furthermore, these tools identified student errors and misconduct, based on abnormal results highlighted by the analysis, which were not discovered during the standard grading procedure. Applying forensic auditing tools enable a rapid approach to verify engineering students reports submitted for grading. This approach will reduce the time burden on educators, enabling them to focus on ensuring the correct design equations and procedures have been applied.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772823000386","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

The grading of assessments that consists of large calculations represents an odious task for educators, as they must verify the correct procedures and algorithms were used as well as ensure that the calculations have been done correctly. For engineering capstone design project assessments, these calculations represent spreadsheets, coding and ancillary calculations that can run to over a hundred pages. There is no meaningful way an educator can properly assess such material in the timeframe given for grading. As such, quantitative tools are needed that enable educators to rapidly evaluate calculation-based assessments. Forensic auditing tools were used here to evaluate calculation-based assessments associated with chemical engineering capstone design projects. These tools analyse how data within sets are presented, the structure of spreadsheets and tables, as well as statistical principles around numbers and their distribution within large data sets. This enables the rapid identification of features within students’ assessments that warrant further investigation to establish if the data has been manipulated or calculation errors exist. The analysis demonstrated that chemical engineering students’ reports can be analysed by forensic auditing tools. Furthermore, these tools identified student errors and misconduct, based on abnormal results highlighted by the analysis, which were not discovered during the standard grading procedure. Applying forensic auditing tools enable a rapid approach to verify engineering students reports submitted for grading. This approach will reduce the time burden on educators, enabling them to focus on ensuring the correct design equations and procedures have been applied.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用法医学工具协助化学工程顶点评估分级
对教育工作者来说,由大量计算组成的评估评分是一项令人讨厌的任务,因为他们必须验证正确的程序和算法,并确保正确的计算。对于工程顶点设计项目评估,这些计算代表电子表格、编码和辅助计算,可以运行到一百多页。没有任何有意义的方法可以让教育工作者在给定的评分时间内正确地评估这些材料。因此,需要定量工具,使教育工作者能够快速评估基于计算的评估。法务审计工具被用于评估与化工顶点设计项目相关的基于计算的评估。这些工具分析了数据集中的数据是如何呈现的,电子表格和表格的结构,以及围绕数字的统计原理及其在大型数据集中的分布。这使得能够快速识别学生评估中的特征,这些特征需要进一步调查,以确定数据是否被操纵或计算错误是否存在。分析表明,化学工程专业学生的报告可以通过法务审计工具进行分析。此外,这些工具根据分析中突出显示的异常结果识别学生的错误和不当行为,这些错误和不当行为在标准评分过程中没有被发现。应用法医审计工具可以快速验证工程学生提交的评分报告。这种方法将减轻教育工作者的时间负担,使他们能够集中精力确保应用了正确的设计方程和程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
17.90%
发文量
30
审稿时长
31 days
期刊介绍: Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning
期刊最新文献
Development of basic thermodynamics workshops integrating a cubic equations of state simulator and MATLAB Grader courses Integration of sustainable development goals in the field of process engineering through active learning methodologies Crystallisation: Solving crystal nucleation problem in the chemical engineering classroom based on the research grade experiments deployed in virtual mode Towards Education 4.0: The role of Large Language Models as virtual tutors in chemical engineering Benefits and impact of emergency training in a VR environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1