This paper describes the development of EoS Simulator, a cubic equations of state simulator created in the MATLAB R2022b App Designer platform, which aims to be a practical digital tool for chemical engineering students that facilitates the solution, analysis, and critical thinking about thermodynamic problems. In the simulator, numerical algorithms were implemented based on a theoretical framework, such as fugacity test, bracketing methods, and the calculation of residual properties. EoS Simulator can estimate two-phase envelopes, isobars, isotherms, and surfaces related to PTVHS properties. MATLAB Grader courses were proposed to test student learning using the software in two different workshops. The evaluation was based on the achievement of tasks related to intended learning outcomes. Survey responses about the simulator and learning environment were collected, concluding that most students improved their skills in understanding thermodynamics phenomena, but some improvements are necessary for future versions of the software and online courses.
The purpose of this paper is to integrate the Sustainable Development Goals (SDGs) in the outlines of a Master's Degree in Industrial Engineering using active learning methodologies. The main objective of this integration is to favor sustainable human education and to increase students’ awareness and responsibility towards future generations from the chemical engineering point of view. Within the process engineering course, the students must design a chemical process using technical, economic, social and environmental criteria. Active learning methodologies were gradually introduced in different academic courses (Project-Based Learning, Collaborative Work and Flipped Classroom) and finally SDGs were implemented in the 2020–21 academic course. A synergetic effect with the active learning methodologies was observed, increasing the motivation of the students and the academics, and the complexity of the projects performed by students. The introduction of the SDGs improved academic results, which was reflected in the absence of failures and a decrease in the percentage of students passing with the lowest grade from 16 % to 10 %. Moreover, students report that this project significantly enhanced their knowledge of the SDGs related to energy and climate change; students having low or very low knowledge about SDGs were reduced to 7 % as compared to the initial 45 %.
Crystallization via nucleation can isolate active pharmaceutical ingredients from their crudes. While chemical engineering textbooks provide theoretical knowledge on crystallization and nucleation theories, they often fall short in providing provide practical insights on the nucleation mechanism. To bridge this gap, we introduced a virtual experiment on nucleation in second-year chemical engineering classrooms. The main goal is to educate students on crystallization procedures in research and process industries, teaching them how to analyse and manage collected data while integrating theoretical knowledge. This includes conveying the kind of information that can be obtained from a crystallisation process and instructing students on how to analyse and manage the data collected in the light of the theories learned. We devised an original chemical engineering problem on nucleation, derived directly from the raw data collected in the classroom from virtual experiments. This method differs from the conventional approach of solving standard textbook problems. The textbook problems, regrettably often lack crucial information on how nucleation rate or surface free energy are directly obtained from raw data. By the conclusion of the virtual experiment, students have acquired a comprehensive understanding encompassing both practical and theoretical aspects of crystallization, with a particular focus on nucleation. The methodologies elucidated in this study can be applied across a spectrum of chemical engineering modules, including process engineering, unit operations in chemical engineering, mass transfer, and can even be integrated into specialized courses dedicated to crystallization.