An Eulerian–Eulerian–Lagrangian modeling of two-phase combustion

IF 2.2 3区 工程技术 Q2 MECHANICS Theoretical and Computational Fluid Dynamics Pub Date : 2023-07-15 DOI:10.1007/s00162-023-00666-x
L. X. Zhou
{"title":"An Eulerian–Eulerian–Lagrangian modeling of two-phase combustion","authors":"L. X. Zhou","doi":"10.1007/s00162-023-00666-x","DOIUrl":null,"url":null,"abstract":"<p>In simulating two-phase combustion, most Reynolds-averaged Navier–Stokes (RANS) simulation and large-eddy simulation (LES) used Eulerian–Lagrangian (E–L) modeling (Eulerian treatment of gas phase and Lagrangian treatment of particles/droplets) which needs much more computational time than the Eulerian–Eulerian (E–E) or two-fluid modeling. However, in the E–E modeling, the problem of how to reduce the computation time for poly-dispersed particles is encountered . To solve this problem, the present author proposed an Eulerian–Eulerian–Lagrangian (E–E–L) modeling of two-phase combustion for both RANS modeling and LES. The E–E–L modeling is an Eulerian treatment of gas phase and a combined Eulerian–Lagrangian treatment of particles/droplets, in which the particle velocity and concentration are solved by Eulerian modeling, and particle temperature and mass change due to reaction are solved by Lagrangian modeling. In this paper, a review is given for an E–E–L modeling of coal combustion, its application in RANS simulation and its possible application in LES. For E–E–L LES, an energy equation model of two-phase sub-grid scale (SGS) stresses accounting for the interaction between two-phase SGS stresses is suggested, and a second-order moment SGS (SOM-SGS) turbulence-chemistry model is adopted to simulate gas-phase reaction in two-phase combustion. These SGS models were separately assessed by comparison with experiments.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"37 6","pages":"767 - 780"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00666-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In simulating two-phase combustion, most Reynolds-averaged Navier–Stokes (RANS) simulation and large-eddy simulation (LES) used Eulerian–Lagrangian (E–L) modeling (Eulerian treatment of gas phase and Lagrangian treatment of particles/droplets) which needs much more computational time than the Eulerian–Eulerian (E–E) or two-fluid modeling. However, in the E–E modeling, the problem of how to reduce the computation time for poly-dispersed particles is encountered . To solve this problem, the present author proposed an Eulerian–Eulerian–Lagrangian (E–E–L) modeling of two-phase combustion for both RANS modeling and LES. The E–E–L modeling is an Eulerian treatment of gas phase and a combined Eulerian–Lagrangian treatment of particles/droplets, in which the particle velocity and concentration are solved by Eulerian modeling, and particle temperature and mass change due to reaction are solved by Lagrangian modeling. In this paper, a review is given for an E–E–L modeling of coal combustion, its application in RANS simulation and its possible application in LES. For E–E–L LES, an energy equation model of two-phase sub-grid scale (SGS) stresses accounting for the interaction between two-phase SGS stresses is suggested, and a second-order moment SGS (SOM-SGS) turbulence-chemistry model is adopted to simulate gas-phase reaction in two-phase combustion. These SGS models were separately assessed by comparison with experiments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两相燃烧的欧拉-欧拉-拉格朗日模型
在模拟两相燃烧时,大多数reynolds -average Navier-Stokes (RANS)模拟和大涡模拟(LES)都采用欧拉-拉格朗日(E-L)模型(气相的欧拉处理和颗粒/液滴的拉格朗日处理),这比欧拉-欧拉(E-E)或双流体模型需要更多的计算时间。然而,在E-E建模中,遇到了如何减少多分散粒子的计算时间的问题。为了解决这一问题,本文提出了一种适用于RANS模型和LES模型的欧拉-欧拉-拉格朗日(E-E-L)两相燃烧模型。E-E-L模型是气相的欧拉处理和颗粒/液滴的欧拉-拉格朗日联合处理,其中颗粒的速度和浓度采用欧拉模型求解,颗粒的温度和反应引起的质量变化采用拉格朗日模型求解。本文综述了煤燃烧的E-E-L模型及其在RANS模拟中的应用,以及在LES模拟中的应用前景。针对E-E-L LES,提出了考虑两相应力相互作用的两相亚网格尺度(SGS)应力能量方程模型,并采用二阶矩SGS (SOM-SGS)湍流化学模型模拟两相燃烧中的气相反应。通过与实验的对比,分别对这些SGS模型进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
期刊最新文献
An analytical study of micro-droplet generation in microfluidic double T-junction devices under effects of channel depth ratio using VOF method An analysis of the effect of the jet initial conditions on the wavelet separated near-field acoustic pressure Analyzing particulate behavior in high-speed, high-altitude conditions through an overlay-based computational approach Long wavelength analysis amendment on the cilia beating assisted peristalsis in a tube Wave reflections and resonance in a Mach 0.9 turbulent jet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1