Development of a Computational Model for the Simulation of an Oscillating Water Column Wave Energy Converter Considering a Savonius Turbine

Q4 Physics and Astronomy Defect and Diffusion Forum Pub Date : 2023-07-14 DOI:10.4028/p-C8qvgv
A. Santos, A. P. Petry, L. Isoldi, G. Dias, J. A. Souza, E. D. dos Santos
{"title":"Development of a Computational Model for the Simulation of an Oscillating Water Column Wave Energy Converter Considering a Savonius Turbine","authors":"A. Santos, A. P. Petry, L. Isoldi, G. Dias, J. A. Souza, E. D. dos Santos","doi":"10.4028/p-C8qvgv","DOIUrl":null,"url":null,"abstract":"This work presents the development of a computational model for the simulation of an Oscillating Water Column device that converts wave flow into electrical energy. The device is placed into a wave channel and a Savonius turbine is inserted in the inlet/outlet duct of the converter. The modeling of the turbine is performed with a rotational moving mesh that simulates the turbine movement in stabilized operating conditions. This coupling provides the minimization of simplifying assumptions, addressing in a single problem the two phenomena inherent to the device approach: the two-phase, incompressible and turbulent flow of air and water in a wave channel containing the oscillating water column device and the incompressible and turbulent airflow passing through a rotational turbine. The computational model was verified/validated for a free stream turbulent flow over a Savonius turbine and verified for the case of wave flow over a converter without the inserted turbine. Results showed that the coupled model allowed obtaining not only available power but also mechanical power in the turbine. For the rotation imposed in the domain, the turbine did not affect the behavior of the wave flow that impinges on the chamber of the OWC device. An augmentation of the power coefficient of the turbine in comparison with turbines subjected to free stream flows was obtained, showing that the fairing of turbine can led to increased power takeoff.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-C8qvgv","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the development of a computational model for the simulation of an Oscillating Water Column device that converts wave flow into electrical energy. The device is placed into a wave channel and a Savonius turbine is inserted in the inlet/outlet duct of the converter. The modeling of the turbine is performed with a rotational moving mesh that simulates the turbine movement in stabilized operating conditions. This coupling provides the minimization of simplifying assumptions, addressing in a single problem the two phenomena inherent to the device approach: the two-phase, incompressible and turbulent flow of air and water in a wave channel containing the oscillating water column device and the incompressible and turbulent airflow passing through a rotational turbine. The computational model was verified/validated for a free stream turbulent flow over a Savonius turbine and verified for the case of wave flow over a converter without the inserted turbine. Results showed that the coupled model allowed obtaining not only available power but also mechanical power in the turbine. For the rotation imposed in the domain, the turbine did not affect the behavior of the wave flow that impinges on the chamber of the OWC device. An augmentation of the power coefficient of the turbine in comparison with turbines subjected to free stream flows was obtained, showing that the fairing of turbine can led to increased power takeoff.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑萨沃纽斯水轮机的振荡水柱波能转换器计算模型的建立
这项工作提出了一个计算模型的发展,模拟振荡水柱装置,将波浪流转化为电能。该装置被放置在一个波通道中,在转换器的进/出风道中插入一个Savonius涡轮机。采用旋转运动网格对汽轮机进行建模,模拟汽轮机在稳定工况下的运动。这种耦合提供了简化假设的最小化,在一个问题中解决了设备方法固有的两个现象:包含振荡水柱装置的波浪通道中空气和水的两相,不可压缩和湍流流动以及通过旋转涡轮机的不可压缩和湍流气流。计算模型在Savonius涡轮上的自由湍流流场和在没有插入涡轮的转化器上的波浪流场进行了验证。结果表明,该耦合模型不仅可以获得涡轮的可用功率,还可以获得涡轮的机械功率。对于施加在区域内的旋转,涡轮不影响冲击OWC装置腔室的波流行为。与自由流动的涡轮相比,得到了涡轮功率系数的增大,表明涡轮的整流罩可以增加功率起飞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Defect and Diffusion Forum
Defect and Diffusion Forum Physics and Astronomy-Radiation
CiteScore
1.20
自引率
0.00%
发文量
127
期刊介绍: Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Selected Mechanical Properties of Concrete with Regard to the Type of Steel Fibers Research on the Influence of Humidity on the Manufacture of GFRP Vessels in the Equatorial Rheological Properties and Segregation of Fresh UHPC with Fibers Affected by Initial Temperature of Concrete Mix Mechanical Properties of Luffa Fiber Reinforced Recycled Polymer Composite Advanced Materials and Technologies in Engineering Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1