Challenges and solutions for automated avian recognition in aerial imagery

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Remote Sensing in Ecology and Conservation Pub Date : 2023-04-26 DOI:10.1002/rse2.318
Zhongqi Miao, Stella X. Yu, K. Landolt, M. Koneff, Timothy P. White, Luke J. Fara, E. Hlavacek, B. Pickens, Travis J. Harrison, W. Getz
{"title":"Challenges and solutions for automated avian recognition in aerial imagery","authors":"Zhongqi Miao, Stella X. Yu, K. Landolt, M. Koneff, Timothy P. White, Luke J. Fara, E. Hlavacek, B. Pickens, Travis J. Harrison, W. Getz","doi":"10.1002/rse2.318","DOIUrl":null,"url":null,"abstract":"Remote aerial sensing provides a non‐invasive, large geographical‐scale technology for avian monitoring, but the manual processing of images limits its development and applications. Artificial Intelligence (AI) methods can be used to mitigate this manual image processing requirement. The implementation of AI methods, however, has several challenges: (1) imbalanced (i.e., long‐tailed) data distribution, (2) annotation uncertainty in categorization, and (3) dataset discrepancies across different study sites. Here we use aerial imagery data of waterbirds around Cape Cod and Lake Michigan in the United States to examine how these challenges limit avian recognition performance. We review existing solutions and demonstrate as use cases how methods like Label Distribution Aware Marginal Loss with Deferred Re‐Weighting, hierarchical classification, and FixMatch address the three challenges. We also present a new approach to tackle the annotation uncertainty challenge using a Soft‐fine Pseudo‐Label methodology. Finally, we aim with this paper to increase awareness in the ecological remote sensing community of these challenges and bridge the gap between ecological applications and state‐of‐the‐art computer science, thereby opening new doors to future research.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.318","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Remote aerial sensing provides a non‐invasive, large geographical‐scale technology for avian monitoring, but the manual processing of images limits its development and applications. Artificial Intelligence (AI) methods can be used to mitigate this manual image processing requirement. The implementation of AI methods, however, has several challenges: (1) imbalanced (i.e., long‐tailed) data distribution, (2) annotation uncertainty in categorization, and (3) dataset discrepancies across different study sites. Here we use aerial imagery data of waterbirds around Cape Cod and Lake Michigan in the United States to examine how these challenges limit avian recognition performance. We review existing solutions and demonstrate as use cases how methods like Label Distribution Aware Marginal Loss with Deferred Re‐Weighting, hierarchical classification, and FixMatch address the three challenges. We also present a new approach to tackle the annotation uncertainty challenge using a Soft‐fine Pseudo‐Label methodology. Finally, we aim with this paper to increase awareness in the ecological remote sensing community of these challenges and bridge the gap between ecological applications and state‐of‐the‐art computer science, thereby opening new doors to future research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航空图像中鸟类自动识别的挑战和解决方案
航空遥感为鸟类监测提供了一种非侵入性、大地理尺度的技术,但人工处理图像限制了其发展和应用。可以使用人工智能(AI)方法来减轻这种手动图像处理要求。然而,人工智能方法的实施面临着几个挑战:(1)数据分布不平衡(即长尾),(2)分类中的注释不确定性,以及(3)不同研究地点的数据集差异。在这里,我们使用美国科德角和密歇根湖周围水鸟的航空图像数据来研究这些挑战如何限制鸟类识别性能。我们回顾了现有的解决方案,并作为用例演示了标签分布感知边际损失和延迟重新加权、分层分类和FixMatch等方法如何解决这三个挑战。我们还提出了一种使用软精细伪标签方法来解决注释不确定性挑战的新方法。最后,本文旨在提高生态遥感界对这些挑战的认识,弥合生态应用与最先进的计算机科学之间的差距,从而为未来的研究打开新的大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
期刊最新文献
Illuminating the Arctic: Unveiling seabird responses to artificial light during polar darkness through citizen science and remote sensing Near real‐time monitoring of wading birds using uncrewed aircraft systems and computer vision Examining wildfire dynamics using ECOSTRESS data with machine learning approaches: the case of South‐Eastern Australia's black summer Amazonian manatee critical habitat revealed by artificial intelligence‐based passive acoustic techniques Combining satellite and field data reveals Congo's forest types structure, functioning and composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1