Ji Zhu , Yuhui Xie , Yu Li , Yuxin Yang , Chengui Li , Dongyi Huang , Wenqiang Wu , Yun Xu , Wei Xia , Xiaolong Huang , Shuangqing Zhou
{"title":"Complete genome sequence of Streptomyces malaysiensis HNM0561, a marine sponge-associated actinomycete producing malaymycin and mccrearamycin E","authors":"Ji Zhu , Yuhui Xie , Yu Li , Yuxin Yang , Chengui Li , Dongyi Huang , Wenqiang Wu , Yun Xu , Wei Xia , Xiaolong Huang , Shuangqing Zhou","doi":"10.1016/j.margen.2022.100947","DOIUrl":null,"url":null,"abstract":"<div><p><em>Streptomyces malaysiensis</em> HNM0561 is a marine sponge-associated actinomycete with the potential to produce potential anti-androgens against prostate cancer cells, including malaymycin and mccrearamycin E. Here, we present the complete genome sequence of <em>S. malaysiensis</em> HNM0561, which consists of a linear chromosome of 11,656,895 bp and a circular plasmid of 32,797 bp, 9849 protein coding genes, 18 rRNA genes, 66 tRNA genes, and 191 sRNA genes. Genomic annotations revealed that 72.03% of the protein-coding genes were assigned to the COG database, among which the abundant genes were predicted to be involved in transcription, replication, carbohydrate transport and metabolism, and amino acid transport and metabolism. Forty-nine putative secondary metabolite biosynthetic gene clusters were found in the genome. Among them, the potential biosynthetic gene clusters of malaymycin and mccrearamycin E have been described respectively. The complete genome information presented here will enable us to investigate the biosynthetic mechanism of two novel structures of malaymycin and mccrearamycin E and to discover novel secondary metabolites with potential against prostate cancer cell activities.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"63 ","pages":"Article 100947"},"PeriodicalIF":1.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778722000253","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1
Abstract
Streptomyces malaysiensis HNM0561 is a marine sponge-associated actinomycete with the potential to produce potential anti-androgens against prostate cancer cells, including malaymycin and mccrearamycin E. Here, we present the complete genome sequence of S. malaysiensis HNM0561, which consists of a linear chromosome of 11,656,895 bp and a circular plasmid of 32,797 bp, 9849 protein coding genes, 18 rRNA genes, 66 tRNA genes, and 191 sRNA genes. Genomic annotations revealed that 72.03% of the protein-coding genes were assigned to the COG database, among which the abundant genes were predicted to be involved in transcription, replication, carbohydrate transport and metabolism, and amino acid transport and metabolism. Forty-nine putative secondary metabolite biosynthetic gene clusters were found in the genome. Among them, the potential biosynthetic gene clusters of malaymycin and mccrearamycin E have been described respectively. The complete genome information presented here will enable us to investigate the biosynthetic mechanism of two novel structures of malaymycin and mccrearamycin E and to discover novel secondary metabolites with potential against prostate cancer cell activities.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.