{"title":"Bayesian stopping","authors":"Igor Douven","doi":"10.1016/j.jmp.2023.102794","DOIUrl":null,"url":null,"abstract":"<div><p>Stopping rules are criteria for determining when data collection can or should be terminated, allowing for inferences to be made. While traditionally discussed in the context of classical statistics, Bayesian<span> statisticians have also begun exploring stopping rules. Kruschke proposed a Bayesian stopping rule utilizing the concept of Highest Density Interval, where data collection can cease once enough probability mass (or density) accumulates in a sufficiently small region of parameter space. This paper presents an alternative to Kruschke’s approach, introducing the novel concept of Relative Importance Interval and considering the distribution of probability mass within parameter space. Using computer simulations, we compare these proposals to each other and to the widely-used Bayes factor-based stopping method. Our results do not indicate a single superior proposal but instead suggest that different stopping rules may be appropriate under different circumstances.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Stopping rules are criteria for determining when data collection can or should be terminated, allowing for inferences to be made. While traditionally discussed in the context of classical statistics, Bayesian statisticians have also begun exploring stopping rules. Kruschke proposed a Bayesian stopping rule utilizing the concept of Highest Density Interval, where data collection can cease once enough probability mass (or density) accumulates in a sufficiently small region of parameter space. This paper presents an alternative to Kruschke’s approach, introducing the novel concept of Relative Importance Interval and considering the distribution of probability mass within parameter space. Using computer simulations, we compare these proposals to each other and to the widely-used Bayes factor-based stopping method. Our results do not indicate a single superior proposal but instead suggest that different stopping rules may be appropriate under different circumstances.