{"title":"ANALISIS PEMBANDINGAN TEKNIK ENSEMBLE SECARA BOOSTING(XGBOOST) DAN BAGGING (RANDOMFOREST) PADA KLASIFIKASI KATEGORI SAMBATAN SEKUENS DNA","authors":"Iswaya Maalik Syahrani","doi":"10.17933/JPPI.2019.090103","DOIUrl":null,"url":null,"abstract":"Bioinformatics research currently supported by rapid growth of computation technology and algorithm. Ensemble decision tree is common method for classifying large and complex dataset such as DNA sequence. By implementing two classification methods with ensemble technique like xgboost and random Forest might improve the accuracy result on classifying DNA Sequence splice junction type. With 96,24% of xgboost accuracy and 95,11% of Random Forest accuracy, our conclusions the xgboost and random forest methods using right parameter setting are highly effective tool for classifying small example dataset. Analyzing both methods with their characteristics will give an overview on how they work to meet the needs in DNA splicing.","PeriodicalId":31332,"journal":{"name":"Jurnal Penelitian Pos dan Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Penelitian Pos dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17933/JPPI.2019.090103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Bioinformatics research currently supported by rapid growth of computation technology and algorithm. Ensemble decision tree is common method for classifying large and complex dataset such as DNA sequence. By implementing two classification methods with ensemble technique like xgboost and random Forest might improve the accuracy result on classifying DNA Sequence splice junction type. With 96,24% of xgboost accuracy and 95,11% of Random Forest accuracy, our conclusions the xgboost and random forest methods using right parameter setting are highly effective tool for classifying small example dataset. Analyzing both methods with their characteristics will give an overview on how they work to meet the needs in DNA splicing.