ANALISIS PEMBANDINGAN TEKNIK ENSEMBLE SECARA BOOSTING(XGBOOST) DAN BAGGING (RANDOMFOREST) PADA KLASIFIKASI KATEGORI SAMBATAN SEKUENS DNA

Iswaya Maalik Syahrani
{"title":"ANALISIS PEMBANDINGAN TEKNIK ENSEMBLE SECARA BOOSTING(XGBOOST) DAN BAGGING (RANDOMFOREST) PADA KLASIFIKASI KATEGORI SAMBATAN SEKUENS DNA","authors":"Iswaya Maalik Syahrani","doi":"10.17933/JPPI.2019.090103","DOIUrl":null,"url":null,"abstract":"Bioinformatics research currently supported by rapid growth of computation technology and algorithm. Ensemble decision tree is common method for classifying large and complex dataset such as DNA sequence. By implementing two classification methods with ensemble technique like xgboost and random Forest might improve the accuracy result on classifying DNA Sequence splice junction type. With 96,24% of xgboost accuracy and 95,11% of Random Forest accuracy, our conclusions  the xgboost and random forest methods using right parameter setting are highly effective tool for classifying small example dataset. Analyzing both methods with their characteristics will give an overview on how they work to meet the needs in DNA splicing.","PeriodicalId":31332,"journal":{"name":"Jurnal Penelitian Pos dan Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Penelitian Pos dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17933/JPPI.2019.090103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Bioinformatics research currently supported by rapid growth of computation technology and algorithm. Ensemble decision tree is common method for classifying large and complex dataset such as DNA sequence. By implementing two classification methods with ensemble technique like xgboost and random Forest might improve the accuracy result on classifying DNA Sequence splice junction type. With 96,24% of xgboost accuracy and 95,11% of Random Forest accuracy, our conclusions  the xgboost and random forest methods using right parameter setting are highly effective tool for classifying small example dataset. Analyzing both methods with their characteristics will give an overview on how they work to meet the needs in DNA splicing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物信息学研究目前得到了计算技术和算法快速发展的支持。集成决策树是对DNA序列等大型复杂数据集进行分类的常用方法。用集成技术实现xgboost和随机森林两种分类方法,可以提高DNA序列剪接连接类型分类的准确性。xgboost和随机森林的准确率分别为96.24%和95.11%,我们的结论是,使用正确参数设置的xgboost和随机森林方法是对小样本数据集进行分类的高效工具。分析这两种方法的特点,将概述它们如何满足DNA剪接的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Pengaruh Literasi Informasi terhadap Penggunaan E-Resources Mahasiswa STMIK Tasikmalaya dengan PLS-MGA Integration of Low Interaction Honeypot and ELK Stack as Attack Detection Systems on Servers Analisis Aspek-aspek Kepatuhan Penyelenggara Pos di Indonesia Analisis Penerapan Teknologi Informasi dalam Mendukung Pengembangan Local E-Government Pengembangan Talenta Nasional bidang Riset dan Inovasi melalui Perencanaan Pelatihan TIK berbasis Gender untuk ASN dan Masyarakat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1