Stability of classification performance on an adaptive neuro fuzzy inference system for disease complication prediction

S. Kusumadewi, L. Rosita, E. Wahyuni
{"title":"Stability of classification performance on an adaptive neuro fuzzy inference system for disease complication prediction","authors":"S. Kusumadewi, L. Rosita, E. Wahyuni","doi":"10.11591/ijai.v12.i2.pp532-542","DOIUrl":null,"url":null,"abstract":"It is crucial to detect disease complications caused by metabolic syndromes early. High cholesterol, high glucose, and high blood pressure are indicators of metabolic syndrome. The aim of this study is to use adaptive neuro fuzzy inference system (ANFIS) to predict potential complications and compare its performance to other classifiers, namely random forest (RF), C4.5, and naïve Bayesian classification (NBC) algorithms. Fuzzy subtractive clustering is used to construct membership functions and fuzzy rules throughout the clustering process. This study analyzed 148 different data sets. Cholesterol, random glucose, systolic, and diastolic blood pressure are all included in the data collection. This learning process was conducted using a hybrid algorithm. The consequent parameters are adjusted forward using the leastsquare approach, while the premise parameters are adjusted backward using the gradient-descent process. The performance of a system is determined by the following indicators: accuracy, sensitivity, specification, precision, area under the curve (AUC), and root mean squared error (RMSE). The results of the training prove that ANFIS is an \"excellent classification\" classifier. ANFIS has proven to have very good stability across the six performance parameters. The adaptive properties used in ANFIS training and the implementation of fuzzy subtractive clustering strongly support this stability.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i2.pp532-542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

It is crucial to detect disease complications caused by metabolic syndromes early. High cholesterol, high glucose, and high blood pressure are indicators of metabolic syndrome. The aim of this study is to use adaptive neuro fuzzy inference system (ANFIS) to predict potential complications and compare its performance to other classifiers, namely random forest (RF), C4.5, and naïve Bayesian classification (NBC) algorithms. Fuzzy subtractive clustering is used to construct membership functions and fuzzy rules throughout the clustering process. This study analyzed 148 different data sets. Cholesterol, random glucose, systolic, and diastolic blood pressure are all included in the data collection. This learning process was conducted using a hybrid algorithm. The consequent parameters are adjusted forward using the leastsquare approach, while the premise parameters are adjusted backward using the gradient-descent process. The performance of a system is determined by the following indicators: accuracy, sensitivity, specification, precision, area under the curve (AUC), and root mean squared error (RMSE). The results of the training prove that ANFIS is an "excellent classification" classifier. ANFIS has proven to have very good stability across the six performance parameters. The adaptive properties used in ANFIS training and the implementation of fuzzy subtractive clustering strongly support this stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于疾病并发症预测的自适应神经模糊推理系统分类性能的稳定性
早期发现代谢综合征引起的疾病并发症至关重要。高胆固醇、高葡萄糖和高血压是代谢综合征的指标。本研究的目的是使用自适应神经模糊推理系统(ANFIS)来预测潜在的并发症,并将其与其他分类器,即随机森林(RF), C4.5和naïve贝叶斯分类(NBC)算法的性能进行比较。在聚类过程中,采用模糊减法聚类来构造隶属函数和模糊规则。这项研究分析了148个不同的数据集。胆固醇、随机血糖、收缩压和舒张压都包括在数据收集中。这个学习过程是使用混合算法进行的。采用最小二乘法对后续参数进行正校正,采用梯度下降法对前提参数进行反校正。系统的性能由以下指标决定:准确度、灵敏度、规格、精密度、曲线下面积(AUC)和均方根误差(RMSE)。训练结果证明了ANFIS是一种“优秀的分类器”。事实证明,ANFIS在六个性能参数上都具有非常好的稳定性。在ANFIS训练中使用的自适应特性和模糊减法聚类的实现有力地支持了这种稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1