Eligibility of village fund direct cash assistance recipients using artificial neural network

Dwi Marisa Midyanti, Syamsul Bahri, S. Suhardi, H. I. Midyanti
{"title":"Eligibility of village fund direct cash assistance recipients using artificial neural network","authors":"Dwi Marisa Midyanti, Syamsul Bahri, S. Suhardi, H. I. Midyanti","doi":"10.11591/ijai.v12.i4.pp1611-1618","DOIUrl":null,"url":null,"abstract":"Bantuan Langsung Tunai Dana Desa (BLT-DD), or known as Village Fund Direct Cash Assistance is assistance from the Indonesian government which causes problems and conflicts in the community when the assistance is not on target. The classification algorithm is proven to use in determining BLT-DD recipients. In this study, the radial basis function (RBF) and elman recurrent neural network (ERNN) models compare to classify the eligibility of BLTDD recipients. In the experiment, the optimal performance of the RBF and ERNN compare in determining the eligibility of BLT-DD recipients. Also, it’s compared with the classification algorithm that implements the same data, namely BLT-DD data for Kubu Raya District. The experimental results show the effectiveness of the RBF model in recognizing test data, while the ERNN model is effective in identifying test data. The RBF and ERNN models can achieve the same total accuracy of 98.10%.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i4.pp1611-1618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Bantuan Langsung Tunai Dana Desa (BLT-DD), or known as Village Fund Direct Cash Assistance is assistance from the Indonesian government which causes problems and conflicts in the community when the assistance is not on target. The classification algorithm is proven to use in determining BLT-DD recipients. In this study, the radial basis function (RBF) and elman recurrent neural network (ERNN) models compare to classify the eligibility of BLTDD recipients. In the experiment, the optimal performance of the RBF and ERNN compare in determining the eligibility of BLT-DD recipients. Also, it’s compared with the classification algorithm that implements the same data, namely BLT-DD data for Kubu Raya District. The experimental results show the effectiveness of the RBF model in recognizing test data, while the ERNN model is effective in identifying test data. The RBF and ERNN models can achieve the same total accuracy of 98.10%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络对村基金直接现金援助受助人的资格进行评估
Bantuan Langsung Tunai Dana Desa (BLT-DD),或称为村庄基金直接现金援助,是印度尼西亚政府的援助,当援助没有达到目标时,会在社区中引起问题和冲突。该分类算法已被证明可用于确定BLT-DD接收者。本研究比较了径向基函数(RBF)和elman递归神经网络(ERNN)模型对BLTDD受者资格的分类。在实验中,比较了RBF和ERNN在确定BLT-DD接受者资格方面的最优性能。并与实现相同数据的分类算法,即Kubu Raya区的BLT-DD数据进行了比较。实验结果表明,RBF模型在识别测试数据方面是有效的,而ERNN模型在识别测试数据方面是有效的。RBF和ERNN模型的总准确率均为98.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1