A Multi-Feature Fusion Model Based on Denoising Convolutional Neural Network and Attention Mechanism for Image Classification

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Swarm Intelligence Research Pub Date : 2023-06-01 DOI:10.4018/ijsir.324074
Jingsi Zhang, Xiaosheng Yu, Xiaoliang Lei, Chengdong Wu
{"title":"A Multi-Feature Fusion Model Based on Denoising Convolutional Neural Network and Attention Mechanism for Image Classification","authors":"Jingsi Zhang, Xiaosheng Yu, Xiaoliang Lei, Chengdong Wu","doi":"10.4018/ijsir.324074","DOIUrl":null,"url":null,"abstract":"Spatial location features extracted by denoising convolutional neural network. At this time, an attention mechanism is introduced into denoising convolutional neural network. The dual attention model of local area is presented from two dimensions of channel and space—channel attention mechanism weights channel and spatial attention mechanism weights location. A variety of machine learning methods are used to classify and train different features. Multi-semantic features and heterogeneous features are fused by adaptive weighted fusion algorithm. Finally, the data sets Cifar-10, STL-10, Cifar-100 and GHIM-1OK are verified on the proposed method. Compared with a single semantic feature, the accuracy is improved by 10%-15%. Compared with several advanced algorithms, the performance has a significant advantage, which proves the complementarity of heterogeneous features and multi-network semantic features and the effectiveness of the adaptive weighted fusion algorithm.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.324074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Spatial location features extracted by denoising convolutional neural network. At this time, an attention mechanism is introduced into denoising convolutional neural network. The dual attention model of local area is presented from two dimensions of channel and space—channel attention mechanism weights channel and spatial attention mechanism weights location. A variety of machine learning methods are used to classify and train different features. Multi-semantic features and heterogeneous features are fused by adaptive weighted fusion algorithm. Finally, the data sets Cifar-10, STL-10, Cifar-100 and GHIM-1OK are verified on the proposed method. Compared with a single semantic feature, the accuracy is improved by 10%-15%. Compared with several advanced algorithms, the performance has a significant advantage, which proves the complementarity of heterogeneous features and multi-network semantic features and the effectiveness of the adaptive weighted fusion algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于去噪卷积神经网络和注意机制的图像分类多特征融合模型
利用卷积神经网络去噪提取空间位置特征。在卷积神经网络去噪中引入了注意机制。从通道和空间两个维度提出了局部区域的双重注意模型——通道注意机制权重通道和空间注意机制权重位置。各种各样的机器学习方法被用来分类和训练不同的特征。采用自适应加权融合算法融合多语义特征和异构特征。最后,对Cifar-10、STL-10、Cifar-100和GHIM-1OK数据集进行了验证。与单个语义特征相比,准确率提高了10%-15%。与几种先进算法相比,该算法具有显著的性能优势,证明了异构特征与多网络语义特征的互补性和自适应加权融合算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Swarm Intelligence Research
International Journal of Swarm Intelligence Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.50
自引率
0.00%
发文量
76
期刊介绍: The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.
期刊最新文献
A Passenger Flow Prediction Method Using SAE-GCN-BiLSTM for Urban Rail Transit A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution CT Image Detection of Pulmonary Tuberculosis Based on the Improved Strategy YOLOv5 A Review on Convergence Analysis of Particle Swarm Optimization Dynamic Robust Particle Swarm Optimization Algorithm Based on Hybrid Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1