Dynamic Robust Particle Swarm Optimization Algorithm Based on Hybrid Strategy

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Swarm Intelligence Research Pub Date : 2023-06-21 DOI:10.4018/ijsir.325006
Jian Zeng, Xiaoyong Yu, Guoyan Yang, H. Gui
{"title":"Dynamic Robust Particle Swarm Optimization Algorithm Based on Hybrid Strategy","authors":"Jian Zeng, Xiaoyong Yu, Guoyan Yang, H. Gui","doi":"10.4018/ijsir.325006","DOIUrl":null,"url":null,"abstract":"Robust optimization over time can effectively solve the problem of frequent solution switching in dynamic environments. In order to improve the search performance of dynamic robust optimization algorithm, a dynamic robust particle swarm optimization algorithm based on hybrid strategy (HS-DRPSO) is proposed in this paper. Based on the particle swarm optimization, the HS-DRPSO combines differential evolution algorithm and brainstorms an optimization algorithm to improve the search ability. Moreover, a dynamic selection strategy is employed to realize the selection of different search methods in the proposed algorithm. Compared with the other two dynamic robust optimization algorithms on five dynamic standard test functions, the results show that the overall performance of the proposed algorithm is better than other comparison algorithms.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.325006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Robust optimization over time can effectively solve the problem of frequent solution switching in dynamic environments. In order to improve the search performance of dynamic robust optimization algorithm, a dynamic robust particle swarm optimization algorithm based on hybrid strategy (HS-DRPSO) is proposed in this paper. Based on the particle swarm optimization, the HS-DRPSO combines differential evolution algorithm and brainstorms an optimization algorithm to improve the search ability. Moreover, a dynamic selection strategy is employed to realize the selection of different search methods in the proposed algorithm. Compared with the other two dynamic robust optimization algorithms on five dynamic standard test functions, the results show that the overall performance of the proposed algorithm is better than other comparison algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合策略的动态鲁棒粒子群优化算法
随着时间的推移,鲁棒优化可以有效地解决动态环境中频繁的解切换问题。为了提高动态鲁棒优化算法的搜索性能,提出了一种基于混合策略的动态鲁棒粒子群优化算法(HS-DRPSO)。HS-DRPSO在粒子群优化的基础上,将差分进化算法与头脑风暴优化算法相结合,提高了搜索能力。此外,该算法采用动态选择策略来实现不同搜索方法的选择。在5个动态标准测试函数上与其他两种动态鲁棒优化算法进行比较,结果表明,本文算法的整体性能优于其他比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Swarm Intelligence Research
International Journal of Swarm Intelligence Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.50
自引率
0.00%
发文量
76
期刊介绍: The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.
期刊最新文献
A Passenger Flow Prediction Method Using SAE-GCN-BiLSTM for Urban Rail Transit A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution CT Image Detection of Pulmonary Tuberculosis Based on the Improved Strategy YOLOv5 A Review on Convergence Analysis of Particle Swarm Optimization Dynamic Robust Particle Swarm Optimization Algorithm Based on Hybrid Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1