Bench-scale experimental study on the fire behavior of electric cable arrays by considering different layouts

IF 1.9 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Fire Sciences Pub Date : 2021-09-20 DOI:10.1177/07349041211043238
Zhouquan Cai, Xiao Chen, Jiaqing Zhang, Shouxiang Lu
{"title":"Bench-scale experimental study on the fire behavior of electric cable arrays by considering different layouts","authors":"Zhouquan Cai, Xiao Chen, Jiaqing Zhang, Shouxiang Lu","doi":"10.1177/07349041211043238","DOIUrl":null,"url":null,"abstract":"The effect of different cable layouts on the fire behavior of electric cable arrays was experimentally studied. The influence of external heat flux on cable fire characteristics was investigated. Several parameters for electrical cables such as the post-burning morphology, ignition time, heat release rate, peak heat release rate and total heat release were obtained. The results show that cable layouts could affect cable charring degrees according to the post-burning morphology. A linear relationship was found in the transformed form of time to ignition and radiant heat flux, and the critical radiant heat flux value for the single cable array appeared smaller than that for the other two layouts. The peak heat release rate for Cables A–D with the single array presents the increasing trend with an increase in radiant heat flux, while the two parallel and intersectional cable arrays present the different trends. Moreover, the total heat release values of Cables A–D in the different cable layouts were analyzed. This work provides the basic data and preliminary investigation to fire engineering of cable arrays with the different layouts.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041211043238","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The effect of different cable layouts on the fire behavior of electric cable arrays was experimentally studied. The influence of external heat flux on cable fire characteristics was investigated. Several parameters for electrical cables such as the post-burning morphology, ignition time, heat release rate, peak heat release rate and total heat release were obtained. The results show that cable layouts could affect cable charring degrees according to the post-burning morphology. A linear relationship was found in the transformed form of time to ignition and radiant heat flux, and the critical radiant heat flux value for the single cable array appeared smaller than that for the other two layouts. The peak heat release rate for Cables A–D with the single array presents the increasing trend with an increase in radiant heat flux, while the two parallel and intersectional cable arrays present the different trends. Moreover, the total heat release values of Cables A–D in the different cable layouts were analyzed. This work provides the basic data and preliminary investigation to fire engineering of cable arrays with the different layouts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑不同布局的电缆阵列火灾特性的台架试验研究
实验研究了不同电缆布局对电缆阵列火灾行为的影响。研究了外部热通量对电缆火灾特性的影响。获得了电缆的几个参数,如后燃形态、点火时间、放热率、峰值放热率和总放热率。结果表明,电缆布局会根据燃烧后的形态影响电缆的炭化程度。点火时间和辐射热通量的转换形式呈线性关系,单根电缆阵列的临界辐射热通量值似乎小于其他两种布局。具有单个阵列的电缆A–D的峰值热释放率随着辐射热通量的增加而呈现出增加的趋势,而两个平行和交叉的电缆阵列呈现出不同的趋势。此外,还分析了不同电缆布局下电缆A–D的总放热值。该工作为不同布局的电缆阵列的消防工程提供了基础数据和初步调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fire Sciences
Journal of Fire Sciences 工程技术-材料科学:综合
CiteScore
4.00
自引率
0.00%
发文量
14
审稿时长
2.5 months
期刊介绍: The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
An experimental case study of escooter fire in a four-story building Measuring the fire growth potential of combustible solids using a cone calorimeter Reduced scale test bench for investigating the upward flame heat impact on external thermal insulation composite system facades Computational study on the glowing combustion of a wooden ember landing on a non-reacting substrate Fire-induced flows for complex fire scenarios in a mechanically ventilated two-storey structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1