{"title":"Morphology and structure characterization of crystalline SnO2 1D nanostructures","authors":"W. Matysiak, T. Tański, W. Smok","doi":"10.4302/PLP.V12I3.1019","DOIUrl":null,"url":null,"abstract":"In recent years, many attempts have been made to improve the sensory properties of SnO2, including design of sensors based on one-dimensional nanostructures of this material, such as nanofibers, nanotubes or nanowires. One of the simpler methods of producing one-dimensional tin oxide nanomaterials is to combine the electrospinning method with a sol-gel process. The purpose of this work was to produce SnO2 nanowires using a hybrid electrospinning method combined with a heat treatment process at the temperature of 600 °C and to analyze the morphology and structure of the one-dimensional nanomaterial produced in this way. Analysis of the morphology of composite one-dimensional tin oxide nanostructures showed that smooth, homogeneous and crystalline nanowires were obtained. Full Text: PDF References N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, E.K. Suh, \"Spectral studies of SnO 2 nanofibres prepared by electrospinning method\", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 64, (2006) CrossRef N. Gao, H.Y. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, ... & H. Liu, \"QCM-based humidity sensor and sensing properties employing colloidal SnO 2 nanowires\", Sens. Actuators B Chem. 293, (2019), 129-135. CrossRef W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, \"In 2 O 3 -SnO 2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance\", J.Alloys and Comp. 746, (2018) CrossRef M. Zhang, Y. Zhen, F. Sun, C. Xu, \"Hydrothermally synthesized SnO 2 -graphene composites for H 2 sensing at low operating temperature\", Mater. Sci. Eng. B. 209, (2016), 37-44. CrossRef Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, \"Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO 2 nanofibers\", Sens. Actuators B Chem. 132, (2008), 67-73. CrossRef W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu, S H. Yan, \"Synthesis of hollow SnO 2 nanobelts and their application in acetone sensor\", Mater. Lett. 132, (2014), 338-341. CrossRef E. Mudra, I. Shepa, O. Milkovic, Z. Dankova, A. Kovalcikova, A. Annusova, E. Majkova, J. Dusza, \"Effect of iron doping on the properties of SnO 2 nano/microfibers\", Appl. Surf. Sci. 480, (2019), 876-881. CrossRef P. Mohanapriya, H. Segawa, K. Watanabe, K. Watanabe, S. Samitsu, T.S. Natarajan, N.V. Jaya, N. Ohashi, \"Enhanced ethanol-gas sensing performance of Ce-doped SnO 2 hollow nanofibers prepared by electrospinning\", Sens. Actuators B Chem. 188, (2013), 872-878. CrossRef W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, \"Preparation of Pr-doped SnO 2 hollow nanofibers by electrospinning method and their gas sensing properties\", J.Alloys and Comp. 605, (2014), 80-88. CrossRef X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, \"Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO 2 hollow nanotube\", Mater. Lett, 273, (2020), 127967. CrossRef F. Li, X. Gao, R. Wang, T. Zhang, G. Lu, Sens. \"Study on TiO 2 -SnO 2 core-shell heterostructure nanofibers with different work function and its application in gas sensor\", Actuators B Chem, 248, (2017), 812-819. CrossRef S. Bai, W. Guo, J. Sun, J. Li, Y. Tian, A. Chen, R. Luo, D. Li, \"Synthesis of SnO 2 –CuO heterojunction using electrospinning and application in detecting of CO\", Sens Actuators B Chem, 226, (2016), 96-103. CrossRef H. Du, P.J. Yao, Y. Sun, J. Wang, H. Wang, N. Yu, \"Electrospinning Hetero-Nanofibers In 2 O 3 /SnO 2 of Homotype Heterojunction with High Gas Sensing Activity\", Sensors, 17, (2017), 1822. CrossRef X. Wang, H. Fan, P. Ren, \"Electrospinning derived hollow SnO 2 microtubes with highly photocatalytic property\", Catal. Commun. 31, (2013), 37-41. CrossRef L. Cheng, S.Y. Ma, T.T. Wang, X.B. Li, J. Luo, W.Q. Li, Y.Z. Mao, D.J Gengzang, \"Synthesis and characterization of SnO 2 hollow nanofibers by electrospinning for ethanol sensing properties\", Mater. Lett. 131, (2014), 23-26. CrossRef P.H. Phuoc, C.M. Hung, N.V. Toan, N.V. Duy, N.D. Hoa, N.V. Hieu, \"One-step fabrication of SnO 2 porous nanofiber gas sensors for sub-ppm H 2 S detection\", Sens. Actuators A Phys. 303, (2020), 111722. CrossRef A.E. Deniz, H.A. Vural, B. Ortac, T. Uyar, \"Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning\", Matter. Lett. 65, (2011), 2941-2943. CrossRef S. Sagadevan, J. Podder, \"Investigation on Structural, Surface Morphological and Dielectric Properties of Zn-doped SnO 2 Nanoparticles\", Mater. Res. 19, (2016), 420-425. CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"70-72"},"PeriodicalIF":0.5000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V12I3.1019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
In recent years, many attempts have been made to improve the sensory properties of SnO2, including design of sensors based on one-dimensional nanostructures of this material, such as nanofibers, nanotubes or nanowires. One of the simpler methods of producing one-dimensional tin oxide nanomaterials is to combine the electrospinning method with a sol-gel process. The purpose of this work was to produce SnO2 nanowires using a hybrid electrospinning method combined with a heat treatment process at the temperature of 600 °C and to analyze the morphology and structure of the one-dimensional nanomaterial produced in this way. Analysis of the morphology of composite one-dimensional tin oxide nanostructures showed that smooth, homogeneous and crystalline nanowires were obtained. Full Text: PDF References N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, E.K. Suh, "Spectral studies of SnO 2 nanofibres prepared by electrospinning method", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 64, (2006) CrossRef N. Gao, H.Y. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, ... & H. Liu, "QCM-based humidity sensor and sensing properties employing colloidal SnO 2 nanowires", Sens. Actuators B Chem. 293, (2019), 129-135. CrossRef W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, "In 2 O 3 -SnO 2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance", J.Alloys and Comp. 746, (2018) CrossRef M. Zhang, Y. Zhen, F. Sun, C. Xu, "Hydrothermally synthesized SnO 2 -graphene composites for H 2 sensing at low operating temperature", Mater. Sci. Eng. B. 209, (2016), 37-44. CrossRef Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, "Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO 2 nanofibers", Sens. Actuators B Chem. 132, (2008), 67-73. CrossRef W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu, S H. Yan, "Synthesis of hollow SnO 2 nanobelts and their application in acetone sensor", Mater. Lett. 132, (2014), 338-341. CrossRef E. Mudra, I. Shepa, O. Milkovic, Z. Dankova, A. Kovalcikova, A. Annusova, E. Majkova, J. Dusza, "Effect of iron doping on the properties of SnO 2 nano/microfibers", Appl. Surf. Sci. 480, (2019), 876-881. CrossRef P. Mohanapriya, H. Segawa, K. Watanabe, K. Watanabe, S. Samitsu, T.S. Natarajan, N.V. Jaya, N. Ohashi, "Enhanced ethanol-gas sensing performance of Ce-doped SnO 2 hollow nanofibers prepared by electrospinning", Sens. Actuators B Chem. 188, (2013), 872-878. CrossRef W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, "Preparation of Pr-doped SnO 2 hollow nanofibers by electrospinning method and their gas sensing properties", J.Alloys and Comp. 605, (2014), 80-88. CrossRef X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, "Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO 2 hollow nanotube", Mater. Lett, 273, (2020), 127967. CrossRef F. Li, X. Gao, R. Wang, T. Zhang, G. Lu, Sens. "Study on TiO 2 -SnO 2 core-shell heterostructure nanofibers with different work function and its application in gas sensor", Actuators B Chem, 248, (2017), 812-819. CrossRef S. Bai, W. Guo, J. Sun, J. Li, Y. Tian, A. Chen, R. Luo, D. Li, "Synthesis of SnO 2 –CuO heterojunction using electrospinning and application in detecting of CO", Sens Actuators B Chem, 226, (2016), 96-103. CrossRef H. Du, P.J. Yao, Y. Sun, J. Wang, H. Wang, N. Yu, "Electrospinning Hetero-Nanofibers In 2 O 3 /SnO 2 of Homotype Heterojunction with High Gas Sensing Activity", Sensors, 17, (2017), 1822. CrossRef X. Wang, H. Fan, P. Ren, "Electrospinning derived hollow SnO 2 microtubes with highly photocatalytic property", Catal. Commun. 31, (2013), 37-41. CrossRef L. Cheng, S.Y. Ma, T.T. Wang, X.B. Li, J. Luo, W.Q. Li, Y.Z. Mao, D.J Gengzang, "Synthesis and characterization of SnO 2 hollow nanofibers by electrospinning for ethanol sensing properties", Mater. Lett. 131, (2014), 23-26. CrossRef P.H. Phuoc, C.M. Hung, N.V. Toan, N.V. Duy, N.D. Hoa, N.V. Hieu, "One-step fabrication of SnO 2 porous nanofiber gas sensors for sub-ppm H 2 S detection", Sens. Actuators A Phys. 303, (2020), 111722. CrossRef A.E. Deniz, H.A. Vural, B. Ortac, T. Uyar, "Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning", Matter. Lett. 65, (2011), 2941-2943. CrossRef S. Sagadevan, J. Podder, "Investigation on Structural, Surface Morphological and Dielectric Properties of Zn-doped SnO 2 Nanoparticles", Mater. Res. 19, (2016), 420-425. CrossRef
近年来,人们已经进行了许多尝试来改善SnO2的传感性能,包括设计基于这种材料的一维纳米结构的传感器,例如纳米纤维、纳米管或纳米线。生产一维氧化锡纳米材料的一种更简单的方法是将静电纺丝法与溶胶-凝胶法相结合。本工作的目的是使用混合静电纺丝方法结合600°C温度下的热处理工艺生产SnO2纳米线,并分析以这种方式生产的一维纳米材料的形态和结构。对复合一维氧化锡纳米结构的形貌分析表明,获得了光滑、均匀、结晶的纳米线。全文:PDF参考文献N.Dharmaraj,C.H.Kim,K.W.Kim,H.Y.Kim,E.K.Suh,“通过静电纺丝方法制备的SnO2纳米纤维的光谱研究”,Spectrochim。Acta-Part A Mol.Biomol。Spectrosc。64,(2006)交叉参考高,李,张,张,曾,志祥,…&H.刘,“基于QCM的湿度传感器和采用胶体SnO2纳米线的传感特性”,Sens.Actuators B Chem。293,(2019),129-135。CrossRef W.Ge,Y.Chang,V.Natarajan,Z.Feng,J.Zhan,X.Ma,“提供增强甲醛传感性能的In2 O3-SnO2杂化多孔纳米结构”,J.Alloys and Comp。746,(2018)CrossRef M.Zhang,Y.Zhen,F.Sun,C.Xu,“低温下用于H2传感的水热合成SnO2-石墨烯复合材料”,Mater。科学。Eng.B.209,(2016),37-44。张,何,李,苗,黄,“基于电纺SnO2纳米纤维的微型气体传感器的制备及乙醇传感性能”,Sens.Actuators B Chem。132.(2008),67-73。李,马,罗,毛,程,耿藏,徐,严,“中空SnO2纳米带的合成及其在丙酮传感器中的应用”,Mater。Lett。132,(2014),338-341。CrossRef E.Mudra,I.Shepa,O.Milkovic,Z.Dankova,A.Kovalcikova,A.Annusova,E.Majkova,J.Dusza,“铁掺杂对SnO2纳米/微纤维性能的影响”,Appl。冲浪科学。480,(2019),876-881。CrossRef P.Mohanapriya,H.Segawa,K.Watanabe,K.Watanabe,S.Samitsu,T.S.Natarajan,N.V.Jaya,N.Ohashi,“通过静电纺丝制备的Ce掺杂SnO2中空纳米纤维的增强乙醇气敏性能”,Sens.Actuators B Chem。188,(2013),872-878。CrossRef W.Q.Li,S.Y.Ma,Y.F.Li,X.B.Li,C.Y.Wang,X.H.Yang,L.Cheng,Y.Z.Mao,J.Luo,D.J.耿藏,G.X.Wan,X.L.Xu,“静电纺丝法制备掺Pr的SnO2中空纳米纤维及其气敏性能”,合金与材料。605,(2014),80-88。CrossRef Xu,S.Y.Ma,X.L.Xu,T.Han,S.T.Pei,Y.Tie,P.F.Cao,W.W.Liu,B.J.Wang,R.Zhang,J.L.Zhang,“基于异质结构ZnO SnO2空心纳米管的快速恢复超灵敏乙二醇传感性能”,Mater。Lett,273,(2020),127967。CrossRef F.Li,X.Gao,R.Wang,T.Zhang,G.Lu,Sens.“不同功函数的TiO2-SnO2核壳异质结构纳米纤维及其在气体传感器中的应用研究”,Actuators B Chem,248,(2017),812-819。CrossRef S.Bai,W.Guo,J.Sun,J.Li,Y.Tian,A.Chen,R.Luo,D.Li,“静电纺丝合成SnO2–CuO异质结及其在CO检测中的应用”,Sens Actuators B Chem,226,(2016),96-103。CrossRef H.Du,P.J.Yao,Y.Sun,J.Wang,H.Wang,N.Yu,“高气敏活性同质异质结中的静电纺丝异质纳米纤维”,传感器,17,(2017),1822。王,范,任,“具有高光催化性能的静电纺丝中空SnO2微管”,Catal。Commun。31,(2013),37-41。CrossRef L.Cheng,S.Y.Ma,T.T.Wang,X.B.Li,J.Luo,W.Q.Li,Y.Z.Mao,D.J Gengzang,“用于乙醇传感性能的SnO2中空纳米纤维的静电纺丝合成与表征”,Mater。Lett。131,(2014),23-26。CrossRef P.H.Phuoc,C.M.Hung,N.V.Toan,N.V.Duy,N.D.Hoa,N.V.Hieu,“用于亚ppm H2S检测的SnO2多孔纳米纤维气体传感器的一步制造”,Sens.Actuators A Phys。303,(2020),111722。CrossRef A.E.Deniz,H.A.Vural,B.Ortac,T.Uyar,“通过激光烧蚀和静电纺丝的金纳米粒子/聚合物纳米纤维复合材料”,物质。Lett。65,(2011),2941-2943。CrossRef S.Sagadvan,J.Podder,“Zn掺杂SnO2纳米颗粒的结构、表面形态和介电性能研究”,Mater。Res.19,(2016),420-425。CrossRef