Implementasi Reccurent Neural Network Untuk Memprediksi Harga Saham

Didi Harlianto, Andris Rachardi, Deandra Aulia Rusdah, E. Safitri, Ely Sudarsono, Alhadi Bustamam
{"title":"Implementasi Reccurent Neural Network Untuk Memprediksi Harga Saham","authors":"Didi Harlianto, Andris Rachardi, Deandra Aulia Rusdah, E. Safitri, Ely Sudarsono, Alhadi Bustamam","doi":"10.14710/JTSISKOM.2021.13898","DOIUrl":null,"url":null,"abstract":"Saham adalah instrumen investasi dengan harga yang sangat fluktuatif. Harga saham dalam kurun waktu tertentu membentuk suatu data runtun waktu. Saat ini, salah satu metode yang cukup populer untuk menangani data runtun adalah Recurrent Neural Network (RNN). Tulisan ini membahas penerapan RNN di masa yang akan datang dalam memprediksi harga saham berdasarkan data harga saham beberapa tahun ke belakang. Tetapi RNN standar memiliki kelemahan yaitu terjadinya kondisi vanishing gradient. Oleh karena itu, arsitektur Long Short Term Memory (LSTM) digunakan pada RNN untuk mengatasi masalah tersebut. Sebagai pembanding, ditampilkan pula hasil prediksi dengan menggunakan model RNN standar. Hasilnya, RNN dengan arsitektur LSTM dapat dengan baik memprediksi harga saham dibandingkan RNN standar yang direfleksikan oleh nilai Mean Absolute Error (MAE) antar kedua model.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2021.13898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Saham adalah instrumen investasi dengan harga yang sangat fluktuatif. Harga saham dalam kurun waktu tertentu membentuk suatu data runtun waktu. Saat ini, salah satu metode yang cukup populer untuk menangani data runtun adalah Recurrent Neural Network (RNN). Tulisan ini membahas penerapan RNN di masa yang akan datang dalam memprediksi harga saham berdasarkan data harga saham beberapa tahun ke belakang. Tetapi RNN standar memiliki kelemahan yaitu terjadinya kondisi vanishing gradient. Oleh karena itu, arsitektur Long Short Term Memory (LSTM) digunakan pada RNN untuk mengatasi masalah tersebut. Sebagai pembanding, ditampilkan pula hasil prediksi dengan menggunakan model RNN standar. Hasilnya, RNN dengan arsitektur LSTM dapat dengan baik memprediksi harga saham dibandingkan RNN standar yang direfleksikan oleh nilai Mean Absolute Error (MAE) antar kedua model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经分析网络的实施以预测股票价格
股票是一种交易工具,其价格极其波动。股票价格在给定的时间段内形成了时间数据串。目前,处理占用数据的一种很受欢迎的方法是神经网络(RNN)。这篇文章讨论了RNN在未来几年根据股票价格数据预测股价方面的应用。但是标准RNN有一个弱点,那就是它的存在……因此,RNN使用了长时间记忆(LSTM)架构来解决这个问题。作为比较,使用标准RNN模型显示预测结果。因此,拥有LSTM架构的RNN可以很好地预测股票价格,而不是由两个模型之间的绝对错误值(MAE)所反映的标准RNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1