Semantic-Based Dynamic Service Adaptation in Context-Aware Mobile Cloud Learning

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2022-09-01 DOI:10.2478/cait-2022-0030
S. Muhamad, N. Admodisastro, H. Osman, N. M. Ali
{"title":"Semantic-Based Dynamic Service Adaptation in Context-Aware Mobile Cloud Learning","authors":"S. Muhamad, N. Admodisastro, H. Osman, N. M. Ali","doi":"10.2478/cait-2022-0030","DOIUrl":null,"url":null,"abstract":"Abstract Self-adaptable system concerns on service adaptation whenever errors persist within the system. Changes in contextual information such as networks or sensors will affect the system’s effectiveness because the service adaptation process is not comprehensively handled in those contexts. Besides, the correctness to get the most equivalence services to be substituted is limitedly being addressed from previous works. A dynamic service adaptation framework is introduced to monitor and run a reasoning control to solve these issues. Hence, this paper presents a case study to proof the dynamic service adaptation framework that leverages on semantic-based approach in a context-aware environment. The evaluation of the case study resulted in a significant difference for the effectiveness at a 95% confidence level, which can be interpreted to confirm that the framework is promising to be used in operating dynamic adaptation process in a pervasive environment.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Self-adaptable system concerns on service adaptation whenever errors persist within the system. Changes in contextual information such as networks or sensors will affect the system’s effectiveness because the service adaptation process is not comprehensively handled in those contexts. Besides, the correctness to get the most equivalence services to be substituted is limitedly being addressed from previous works. A dynamic service adaptation framework is introduced to monitor and run a reasoning control to solve these issues. Hence, this paper presents a case study to proof the dynamic service adaptation framework that leverages on semantic-based approach in a context-aware environment. The evaluation of the case study resulted in a significant difference for the effectiveness at a 95% confidence level, which can be interpreted to confirm that the framework is promising to be used in operating dynamic adaptation process in a pervasive environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上下文感知移动云学习中基于语义的动态服务适应
自适应系统关注的是当系统中存在错误时对服务的适应。上下文信息(如网络或传感器)的变化将影响系统的有效性,因为服务适应过程在这些上下文中没有得到全面处理。此外,从以前的工作中有限地解决了获得最多可替换的等价服务的正确性。引入动态服务适应框架来监视和运行推理控制以解决这些问题。因此,本文提出了一个案例研究来证明动态服务适应框架在上下文感知环境中利用基于语义的方法。对案例研究的评估结果显示,在95%的置信水平上,有效性存在显著差异,这可以解释为确认该框架有望用于在普遍环境中操作动态适应过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1