Effects of soil water and nitrogen on drought resilience, growth, yield, and grain quality of a spring wheat

IF 1 4区 农林科学 Q3 AGRONOMY Canadian Journal of Plant Science Pub Date : 2023-05-15 DOI:10.1139/cjps-2022-0210
D. Biswas, B. Gjetvaj, M. St. Luce, Kui Liu, Haben Asgedom
{"title":"Effects of soil water and nitrogen on drought resilience, growth, yield, and grain quality of a spring wheat","authors":"D. Biswas, B. Gjetvaj, M. St. Luce, Kui Liu, Haben Asgedom","doi":"10.1139/cjps-2022-0210","DOIUrl":null,"url":null,"abstract":"Abstract Drought imposes a significant challenge for crop production. However, little is known about the impact of drought priming and nitrogen (N) application and their interactive effects on drought resilience, yield, and grain quality in wheat. Spring wheat (cv. Stettler) was grown in plastic pots (25 cm diameter) with high, moderate, and low soil water levels and received N (added N) or without N (no N added), and subjected to acute drought for 10 days, then rewatering at the tillering stage. Canopy temperature, maximum efficiency of photosystem II, and normalized difference vegetation index were measured at 3-day intervals during drought-recovery periods to quantify drought resistance and resilience. Above-ground dry matter, straw dry matter, seed dry matter, harvest index, and grain N, phosphorus (P), and zinc (Zn) concentrations were determined. Both moderate- and low-water-grown plants had higher drought resistance than high-water-grown plants. The addition of N alleviated acute drought stress in high- and moderate-water-grown plants but exacerbated drought stress in low-water-grown plants. Both high and moderate water resulted in higher grain yields, but had a lower harvest index than low water. The highest and lowest grain N were observed in the low- and high-water-grown plants, respectively. The addition of N increased N and N:P in grains but decreased grain Zn:N. This study showed that moderate drought priming along with N application can improve drought resistance, yield, and grain quality. The results also indicated that canopy thermal imaging is a useful tool for high-throughput quantification of the drought resistance of wheat.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"401 - 410"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0210","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Drought imposes a significant challenge for crop production. However, little is known about the impact of drought priming and nitrogen (N) application and their interactive effects on drought resilience, yield, and grain quality in wheat. Spring wheat (cv. Stettler) was grown in plastic pots (25 cm diameter) with high, moderate, and low soil water levels and received N (added N) or without N (no N added), and subjected to acute drought for 10 days, then rewatering at the tillering stage. Canopy temperature, maximum efficiency of photosystem II, and normalized difference vegetation index were measured at 3-day intervals during drought-recovery periods to quantify drought resistance and resilience. Above-ground dry matter, straw dry matter, seed dry matter, harvest index, and grain N, phosphorus (P), and zinc (Zn) concentrations were determined. Both moderate- and low-water-grown plants had higher drought resistance than high-water-grown plants. The addition of N alleviated acute drought stress in high- and moderate-water-grown plants but exacerbated drought stress in low-water-grown plants. Both high and moderate water resulted in higher grain yields, but had a lower harvest index than low water. The highest and lowest grain N were observed in the low- and high-water-grown plants, respectively. The addition of N increased N and N:P in grains but decreased grain Zn:N. This study showed that moderate drought priming along with N application can improve drought resistance, yield, and grain quality. The results also indicated that canopy thermal imaging is a useful tool for high-throughput quantification of the drought resistance of wheat.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土壤水分和氮素对春小麦抗旱性、生长、产量和品质的影响
干旱是农作物生产面临的重大挑战。然而,干旱胁迫和氮肥施用对小麦抗旱性、产量和籽粒品质的影响及其交互作用尚不清楚。春小麦(cv;施氮(加氮)和不施氮(不加氮),在高、中、低土壤水位的25 cm塑料盆中生长,急性干旱处理10 d,分蘖期补水。在干旱恢复期每隔3 d测量一次冠层温度、光系统II最高效率和归一化植被指数,以量化抗旱性和抗旱性。测定地上干物质、秸秆干物质、种子干物质、收获指数和籽粒氮、磷、锌浓度。中低水量植物的抗旱性均高于高水量植物。氮的添加减轻了高、中水分植株的急性干旱胁迫,但加重了低水分植株的干旱胁迫。高、中水分均能提高粮食产量,但收获指数低于低水分。低水分和高水分植株籽粒氮含量最高、最低。施氮增加了籽粒N和N:P,降低了籽粒Zn:N。本研究表明,适度干旱灌浆配施氮肥可以提高抗旱性、产量和籽粒品质。研究结果还表明,冠层热成像是小麦抗旱性高通量定量分析的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
8.30%
发文量
91
审稿时长
1 months
期刊介绍: Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.
期刊最新文献
An intellectual gap in root research on major crops of the Canadian Prairies Seeding rate and sulfur drive field pea yields in the Maritime region of Canada Alfalfa (Medicago sativa L.) quality is improved from tractor traffic implemented during harvest Evaluation of sequential mesotrione application rates and sequential tolpyralate and mesotrione applications for narrow-leaved goldenrod management in lowbush blueberry The potato vine crusher: a new tool for harvest weed seed control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1