{"title":"Simulation design and optimization of amorphous silicon/crystalline silicon heterojunction solar cells based on localized p-n junctions","authors":"J. S. Wang, Junsong Yuan, S. Q. Liu, X. Deng","doi":"10.15251/djnb.2023.182.423","DOIUrl":null,"url":null,"abstract":"Hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells are currently a hot research topic in the field of photovoltaics, where parasitic absorption due to hydrogenated amorphous silicon layers has not been effectively addressed. For this reason, amorphous silicon/crystalline silicon heterojunction solar cells with localized p-n junctions (HACL cells) have been designed, which can significantly improve the parasitic absorption losses while maintaining the original advantages such as high open-circuit voltage. In this paper, we mainly use ATLAS 2D simulation software to conduct device simulation and parameter optimization of HACL cells, and simulate the effects of factors such as passivation inlet region width, insulation layer width, emitter width, passivation inlet region doping concentration and substrate doping concentration on the cell performance, respectively.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/djnb.2023.182.423","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells are currently a hot research topic in the field of photovoltaics, where parasitic absorption due to hydrogenated amorphous silicon layers has not been effectively addressed. For this reason, amorphous silicon/crystalline silicon heterojunction solar cells with localized p-n junctions (HACL cells) have been designed, which can significantly improve the parasitic absorption losses while maintaining the original advantages such as high open-circuit voltage. In this paper, we mainly use ATLAS 2D simulation software to conduct device simulation and parameter optimization of HACL cells, and simulate the effects of factors such as passivation inlet region width, insulation layer width, emitter width, passivation inlet region doping concentration and substrate doping concentration on the cell performance, respectively.