Language Inference Using Elman Networks with Evolutionary Training

Signals Pub Date : 2022-09-06 DOI:10.3390/signals3030037
Nikolaos P. Anastasopoulos, I. Tsoulos, E. Dermatas, E. Karvounis
{"title":"Language Inference Using Elman Networks with Evolutionary Training","authors":"Nikolaos P. Anastasopoulos, I. Tsoulos, E. Dermatas, E. Karvounis","doi":"10.3390/signals3030037","DOIUrl":null,"url":null,"abstract":"In this paper, a novel Elman-type recurrent neural network (RNN) is presented for the binary classification of arbitrary symbol sequences, and a novel training method, including both evolutionary and local search methods, is evaluated using sequence databases from a wide range of scientific areas. An efficient, publicly available, software tool is implemented in C++, accelerating significantly (more than 40 times) the RNN weights estimation process using both simd and multi-thread technology. The experimental results, in all databases, with the hybrid training method show improvements in a range of 2% to 25% compared with the standard genetic algorithm.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals3030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel Elman-type recurrent neural network (RNN) is presented for the binary classification of arbitrary symbol sequences, and a novel training method, including both evolutionary and local search methods, is evaluated using sequence databases from a wide range of scientific areas. An efficient, publicly available, software tool is implemented in C++, accelerating significantly (more than 40 times) the RNN weights estimation process using both simd and multi-thread technology. The experimental results, in all databases, with the hybrid training method show improvements in a range of 2% to 25% compared with the standard genetic algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于进化训练的Elman网络语言推理
本文提出了一种新的Elman型递归神经网络(RNN),用于任意符号序列的二元分类,并使用来自广泛科学领域的序列数据库评估了一种新颖的训练方法,包括进化和局部搜索方法。在C++中实现了一个高效的、公开可用的软件工具,大大加快了使用simd和多线程技术的RNN权重估计过程(超过40倍)。在所有数据库中,使用混合训练方法的实验结果显示,与标准遗传算法相比,改进幅度在2%至25%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques Correction: Martin et al. ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes. Signals 2024, 5, 147–164 On the Impulse Response of Singular Discrete LTI Systems and Three Fourier Transform Pairs Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1