The effect of complex modification on the structure and properties of gray cast iron for tribotechnical application

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING Obrabotka Metallov-Metal Working and Material Science Pub Date : 2022-12-15 DOI:10.17212/1994-6309-2022-24.4-165-180
D. Gabets, A. Markov, Mikhail Guryev, E. Pismenny, A. Nasyrova
{"title":"The effect of complex modification on the structure and properties of gray cast iron for tribotechnical application","authors":"D. Gabets, A. Markov, Mikhail Guryev, E. Pismenny, A. Nasyrova","doi":"10.17212/1994-6309-2022-24.4-165-180","DOIUrl":null,"url":null,"abstract":"Introduction. An approach based on the complex modification of cast irons makes it possible to improve its mechanical properties by changing the structure of the metal matrix, as well as the shape of graphite and its distribution. The aim of this work is to study the influence of alloying elements on the structure and mechanical properties of gray cast irons obtained for operation under friction wear conditions. Research methods. The paper describes the process of obtaining complex modified gray cast irons. Fractographic investigation of dynamically destroyed samples is carried out. Structure’s features of SCh35, ChMN-35M and SChKM-45 gray cast irons are studied. Tribological testing under sliding friction conditions is carried out. Results and its discussion. It is established that the complex modification of SCh35 gray cast iron with molybdenum, nickel and vanadium makes it possible to increase its hardness to 295 HB and tensile strength to 470-505 MPa. Alloying with nickel (0.4-0.7 wt.%), molybdenum (0.4-0.7 wt.%) and vanadium (0.2-0.4 wt.%) leads to a decrease in the interlamellar distance of perlite by 2 times, as well as to the metal matrix grain refining. The length of graphite lamellas of modified cast irons is reduced by 3-5 times. An additional effect on the tensile strength of cast iron is due to the alloying of ferrite with molybdenum and vanadium, which is fallen out along the boundaries of graphite inclusions. Alloying of ferrite with molybdenum and vanadium increases the level of its microhardness by 1.4 times in comparison with the α-phase of SCh35 serial cast iron. The results of tribotechnical tests of the designed materials are presented. Conclusions. It is established that the wear of specimens made of SChKM-45 cast iron is approximately 20-30% lower compared to cast iron SCh35 cast iron and 10-15% lower compared to ChMN-35M cast iron. Fractographic studies show that complex alloying with molybdenum, vanadium and nickel, contributing to the refining of pearlite colonies, leads to a decrease of the size of the cleavage facets.","PeriodicalId":42889,"journal":{"name":"Obrabotka Metallov-Metal Working and Material Science","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obrabotka Metallov-Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2022-24.4-165-180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction. An approach based on the complex modification of cast irons makes it possible to improve its mechanical properties by changing the structure of the metal matrix, as well as the shape of graphite and its distribution. The aim of this work is to study the influence of alloying elements on the structure and mechanical properties of gray cast irons obtained for operation under friction wear conditions. Research methods. The paper describes the process of obtaining complex modified gray cast irons. Fractographic investigation of dynamically destroyed samples is carried out. Structure’s features of SCh35, ChMN-35M and SChKM-45 gray cast irons are studied. Tribological testing under sliding friction conditions is carried out. Results and its discussion. It is established that the complex modification of SCh35 gray cast iron with molybdenum, nickel and vanadium makes it possible to increase its hardness to 295 HB and tensile strength to 470-505 MPa. Alloying with nickel (0.4-0.7 wt.%), molybdenum (0.4-0.7 wt.%) and vanadium (0.2-0.4 wt.%) leads to a decrease in the interlamellar distance of perlite by 2 times, as well as to the metal matrix grain refining. The length of graphite lamellas of modified cast irons is reduced by 3-5 times. An additional effect on the tensile strength of cast iron is due to the alloying of ferrite with molybdenum and vanadium, which is fallen out along the boundaries of graphite inclusions. Alloying of ferrite with molybdenum and vanadium increases the level of its microhardness by 1.4 times in comparison with the α-phase of SCh35 serial cast iron. The results of tribotechnical tests of the designed materials are presented. Conclusions. It is established that the wear of specimens made of SChKM-45 cast iron is approximately 20-30% lower compared to cast iron SCh35 cast iron and 10-15% lower compared to ChMN-35M cast iron. Fractographic studies show that complex alloying with molybdenum, vanadium and nickel, contributing to the refining of pearlite colonies, leads to a decrease of the size of the cleavage facets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂变质处理对摩擦技术用灰铸铁组织和性能的影响
介绍。一种基于铸铁复合改性的方法,可以通过改变金属基体的组织、石墨的形状和分布来改善铸铁的力学性能。本工作的目的是研究合金元素对摩擦磨损条件下灰口铸铁组织和力学性能的影响。研究方法。介绍了复合改性灰铸铁的制备工艺。对动态破坏试样进行了断口形貌研究。研究了SCh35、ChMN-35M和SChKM-45灰铸铁的组织特点。进行了滑动摩擦条件下的摩擦学试验。结果及其讨论。结果表明,对SCh35灰铸铁进行钼、镍、钒复合改性,可使其硬度达到295 HB,抗拉强度达到470 ~ 505 MPa。与镍(0.4-0.7 wt.%)、钼(0.4-0.7 wt.%)和钒(0.2-0.4 wt.%)合金化后,珍珠岩的层间距离减小了2倍,金属基体晶粒细化。改性铸铁的石墨薄片长度减少了3-5倍。对铸铁抗拉强度的另一个影响是由于铁素体与钼和钒的合金化,钼和钒沿着石墨夹杂物的边界脱落。铁素体与钼、钒合金化后,其显微硬度比SCh35系列铸铁α-相提高了1.4倍。给出了所设计材料的摩擦学试验结果。结论。结果表明,SChKM-45铸铁试样的磨损比铸铁、SCh35铸铁试样的磨损降低约20-30%,比ChMN-35M铸铁试样的磨损降低10-15%。断口学研究表明,与钼、钒、镍的复合合金化有助于珠光体菌落的细化,导致解理面尺寸减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Obrabotka Metallov-Metal Working and Material Science
Obrabotka Metallov-Metal Working and Material Science METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
50.00%
发文量
26
期刊最新文献
Free vibration and mechanical behavior of treated woven jute polymer composite Analysis of mechanical behavior and free vibration characteristics of treated Saccharum munja fiber polymer composite Synthesis of Ti–Fe intermetallic compounds from elemental powders mixtures The concept of microsimulation of processes of joining dissimilar materials by plastic deformation Experimental studies of high-speed grinding rails modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1