Mechanical responses of coated solids in elastohydrodynamically lubricated line contacts

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL International Journal of Surface Science and Engineering Pub Date : 2017-11-26 DOI:10.1504/IJSURFSE.2017.10009289
Yangyi Xiao, W. Shi, Jing Luo
{"title":"Mechanical responses of coated solids in elastohydrodynamically lubricated line contacts","authors":"Yangyi Xiao, W. Shi, Jing Luo","doi":"10.1504/IJSURFSE.2017.10009289","DOIUrl":null,"url":null,"abstract":"For layered solids consisting of physical vapour deposition coatings on steel substrates in lubricated line contacts, the elastohydrodynamic lubrication (EHL) behaviour is studied by the full-system finite element approach. Numerical solutions illustrate that the coating thickness, elastic modulus, and operating conditions have significant influences upon the EHL film pressure and thickness profiles, along with the coefficient of friction. Results for stress distributions provide insight into the tendency for yielding, pitting, and interfacial delamination in coated bodies. Furthermore, the film pressure and stress status induced by the interfacial micro-valley as well as rough coating surface and interface are investigated. It is demonstrated that optimised multi-layer coatings are propitious to reduce the stress gradient and failure risks of coated materials.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":"11 1","pages":"450"},"PeriodicalIF":1.0000,"publicationDate":"2017-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/IJSURFSE.2017.10009289","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

For layered solids consisting of physical vapour deposition coatings on steel substrates in lubricated line contacts, the elastohydrodynamic lubrication (EHL) behaviour is studied by the full-system finite element approach. Numerical solutions illustrate that the coating thickness, elastic modulus, and operating conditions have significant influences upon the EHL film pressure and thickness profiles, along with the coefficient of friction. Results for stress distributions provide insight into the tendency for yielding, pitting, and interfacial delamination in coated bodies. Furthermore, the film pressure and stress status induced by the interfacial micro-valley as well as rough coating surface and interface are investigated. It is demonstrated that optimised multi-layer coatings are propitious to reduce the stress gradient and failure risks of coated materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性流体动力学润滑线接触中涂覆固体的力学响应
对于在润滑线接触中由钢基体上的物理气相沉积涂层组成的层状固体,采用全系统有限元方法研究了弹流润滑(EHL)行为。数值解表明,涂层厚度、弹性模量和操作条件对EHL膜压力和厚度分布以及摩擦系数有显著影响。应力分布的结果提供了对涂层体中屈服、点蚀和界面分层趋势的深入了解。此外,还研究了界面微谷以及粗糙涂层表面和界面引起的薄膜压力和应力状态。结果表明,优化的多层涂层有利于降低涂层材料的应力梯度和失效风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
25.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.
期刊最新文献
Nanofiber composite PCL/HA coating by spray method on metallic implant materials for medical applications: A Study on the Different spraying distances and pressures A novel magnetorheological finishing process based on three revolving flat tip tools for external cylindrical surfaces Investigation of solid particle erosion behaviour of Fe-Cr alloy coating Surface integrity and chip morphology in Ti-6Al-4V machining under CO2 cooling with Vortex Tube Characterisation of surfaces coated with different nanocellulose-based suspensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1