S. Nirmal Kumar, Srinivas Appari, Bhanu Vardhan Reddy Kuncharam
{"title":"Techniques for Overcoming Sulfur Poisoning of Catalyst Employed in Hydrocarbon Reforming","authors":"S. Nirmal Kumar, Srinivas Appari, Bhanu Vardhan Reddy Kuncharam","doi":"10.1007/s10563-021-09340-w","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfur poisoning of catalyst is a well-known phenomenon observed during the production of syngas (CO + H<sub>2</sub>). The presence of traces of sulfur content in the feedstock can drastically reduce the catalyst activity and life. Several measures have been developed over the years to mitigate the catalyst deactivation process due to sulfur poisoning. In this paper, we review literature from 1996-present related to all the developments made for sulfur-resistant systems. The basis of poisoning being the sulfur content in the feedstock, potential fuel-containing feedstocks for syngas production were briefly discussed. The basics of sulfur poisoning mechanisms are also summarized. Then, a framework consisting of sulfur tolerance methodologies were discussed. In particular, we have discussed: (i) catalyst development by altering catalyst composition and support systems, (ii) influence of using catalyst structures, (iii) process modifications and optimization, (iv) desulfurization techniques for removal of sulfur from feed and/or product streams, and (v) effective catalyst regeneration techniques to extend the catalyst life. This review emphasizes the integration of the best set of methods to develop sulfur tolerance strategies.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"25 4","pages":"362 - 388"},"PeriodicalIF":2.1000,"publicationDate":"2021-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-021-09340-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 12
Abstract
Sulfur poisoning of catalyst is a well-known phenomenon observed during the production of syngas (CO + H2). The presence of traces of sulfur content in the feedstock can drastically reduce the catalyst activity and life. Several measures have been developed over the years to mitigate the catalyst deactivation process due to sulfur poisoning. In this paper, we review literature from 1996-present related to all the developments made for sulfur-resistant systems. The basis of poisoning being the sulfur content in the feedstock, potential fuel-containing feedstocks for syngas production were briefly discussed. The basics of sulfur poisoning mechanisms are also summarized. Then, a framework consisting of sulfur tolerance methodologies were discussed. In particular, we have discussed: (i) catalyst development by altering catalyst composition and support systems, (ii) influence of using catalyst structures, (iii) process modifications and optimization, (iv) desulfurization techniques for removal of sulfur from feed and/or product streams, and (v) effective catalyst regeneration techniques to extend the catalyst life. This review emphasizes the integration of the best set of methods to develop sulfur tolerance strategies.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.