{"title":"Optical characteristics and biosensing application of core@shell nanomaterials","authors":"Sarita Shaktawat , Kshitij RB Singh , Sushma Thapa , Ranjana Verma , Jay Singh , Ravindra Pratap Singh","doi":"10.1016/j.mlblux.2023.100187","DOIUrl":null,"url":null,"abstract":"<div><p>Core@shell nanomaterials are a class of materials containing a core and a shell, both at the nanometer scale, as they have become a consequential research interest owing to their optical, electrical, and magnetic properties. Moreover, various core@shell nanomaterials have also emerged in many other fields, such as catalysis, pharmaceuticals, and biomedical due to their less toxicity, surface area, good biocompatibility, adequate penetration power for biological tissue, and selectivity for target molecules. Hence, this review covers the optical properties of core@shell nanomaterials and biosensors based on various core@shell nanomaterials, for example, inorganic@inorganic (Au@Ag), organic@inorganic (polyurethane@Au), inorganic@organic (CeO<sub>2</sub>@polyaniline), and organic@organic (poly(vinylidene difluoride)@dopamine) for biomedical applications; along with this, it also discusses the advantage and disadvantage of core@shell nanomaterials.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"17 ","pages":"Article 100187"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590150823000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Core@shell nanomaterials are a class of materials containing a core and a shell, both at the nanometer scale, as they have become a consequential research interest owing to their optical, electrical, and magnetic properties. Moreover, various core@shell nanomaterials have also emerged in many other fields, such as catalysis, pharmaceuticals, and biomedical due to their less toxicity, surface area, good biocompatibility, adequate penetration power for biological tissue, and selectivity for target molecules. Hence, this review covers the optical properties of core@shell nanomaterials and biosensors based on various core@shell nanomaterials, for example, inorganic@inorganic (Au@Ag), organic@inorganic (polyurethane@Au), inorganic@organic (CeO2@polyaniline), and organic@organic (poly(vinylidene difluoride)@dopamine) for biomedical applications; along with this, it also discusses the advantage and disadvantage of core@shell nanomaterials.