{"title":"Enhanced depth of field of integral imaging display using bifocal microlens array fabricated by two-step lithography","authors":"Wenwen Wang, Yongai Zhang, Chaoxing Wu, Qun Yan, Tailiang Guo, Xiongtu Zhou","doi":"10.1002/jsid.1226","DOIUrl":null,"url":null,"abstract":"Due to the limitation of traditional microlens arrays (MLAs) in integral imaging display, the depth of field (DOF) is restricted in space and the center depth plane is difficult to extend in a large range. Here, we propose a microfabrication method based on bifocal MLAs to improve DOF. The bifocal MLAs for extended DOF were fabricated by using two‐step photolithography and thermal reflow. This method allows diverse microlenses of high to low numerical aperture to achieve high spatial resolution as well as accurate depth estimation. Microlenses of different focal lengths were simultaneously deposited on a substrate by repeated photolithography with multiple photomasks with alignment mark to define micro‐posts of different thicknesses. Hexagonally packaged bifocal MLAs clearly show the DOF extended from 0.004 to 4.908 mm for 57.6 μm in lens diameter, and their corresponding object distance ranges from 0.125 to 0.165 mm. Based on the proposed scheme, this method provides potential applications in integral imaging 3D display or light field display.","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1226","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the limitation of traditional microlens arrays (MLAs) in integral imaging display, the depth of field (DOF) is restricted in space and the center depth plane is difficult to extend in a large range. Here, we propose a microfabrication method based on bifocal MLAs to improve DOF. The bifocal MLAs for extended DOF were fabricated by using two‐step photolithography and thermal reflow. This method allows diverse microlenses of high to low numerical aperture to achieve high spatial resolution as well as accurate depth estimation. Microlenses of different focal lengths were simultaneously deposited on a substrate by repeated photolithography with multiple photomasks with alignment mark to define micro‐posts of different thicknesses. Hexagonally packaged bifocal MLAs clearly show the DOF extended from 0.004 to 4.908 mm for 57.6 μm in lens diameter, and their corresponding object distance ranges from 0.125 to 0.165 mm. Based on the proposed scheme, this method provides potential applications in integral imaging 3D display or light field display.
期刊介绍:
The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.