{"title":"Machine learning-based automatic construction of earthquake catalog for reservoir areas in multiple river basins of Guizhou province, China","authors":"Longfei Duan , Cuiping Zhao , Xingzhong Du , Lianqing Zhou","doi":"10.1016/j.eqs.2023.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Large reservoirs have the risk of reservoir induced seismicity. Accurately detecting and locating microseismic events are crucial when studying reservoir earthquakes. Automatic earthquake monitoring in reservoir areas is one of the effective measures for earthquake disaster prevention and mitigation. In this study, we first applied the automatic location workflow (named LOC-FLOW) to process 14-day continuous waveform data from several reservoir areas in different river basins of Guizhou province. Compared with the manual seismic catalog, the recall rate of seismic event detection using the workflow was 83.9%. Of the detected earthquakes, 88.9% had an onset time difference below 1 s, 81.8% has a deviation in epicenter location within 5 km, and 77.8% had a focal depth difference of less than 5 km, indicating that the workflow has good generalization capacity in reservoir areas. We further applied the workflow to retrospectively process continuous waveform data recorded from 2020 to the first half of 2021 in reservoir areas in multiple river basins of western Guizhou province and identified five times the number of seismic events obtained through manual processing. Compared with manual processing of seismic catalog, the completeness magnitude had decreased from 1.3 to 0.8, and a <em>b</em>-value of 1.25 was calculated for seismicity in western Guizhou province, consistent with the <em>b</em>-values obtained for the reservoir area in previous studies. Our results show that seismicity levels were relatively low around large reservoirs that were impounded over 15 years ago, and there is no significant correlation between the seismicity in these areas and reservoir impoundment. Seismicity patterns were notably different around two large reservoirs that were only impounded about 12 years ago, which may be explained by differences in reservoir storage capacity, the geologic and tectonic settings, hydrogeological characteristics, and active fault the reservoir areas. Prominent seismicity persisted around two large reservoirs that have been impounded for less than 10 years. These events were clustered and had relatively shallow focal depths. The impoundment of the Jiayan Reservoir had not officially begun during this study period, but earthquake location results suggested a high seismicity level in this reservoir area. Therefore, any seismicity in this reservoir area after the official impoundment deserves special attention.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 2","pages":"Pages 132-146"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451923000174","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
Large reservoirs have the risk of reservoir induced seismicity. Accurately detecting and locating microseismic events are crucial when studying reservoir earthquakes. Automatic earthquake monitoring in reservoir areas is one of the effective measures for earthquake disaster prevention and mitigation. In this study, we first applied the automatic location workflow (named LOC-FLOW) to process 14-day continuous waveform data from several reservoir areas in different river basins of Guizhou province. Compared with the manual seismic catalog, the recall rate of seismic event detection using the workflow was 83.9%. Of the detected earthquakes, 88.9% had an onset time difference below 1 s, 81.8% has a deviation in epicenter location within 5 km, and 77.8% had a focal depth difference of less than 5 km, indicating that the workflow has good generalization capacity in reservoir areas. We further applied the workflow to retrospectively process continuous waveform data recorded from 2020 to the first half of 2021 in reservoir areas in multiple river basins of western Guizhou province and identified five times the number of seismic events obtained through manual processing. Compared with manual processing of seismic catalog, the completeness magnitude had decreased from 1.3 to 0.8, and a b-value of 1.25 was calculated for seismicity in western Guizhou province, consistent with the b-values obtained for the reservoir area in previous studies. Our results show that seismicity levels were relatively low around large reservoirs that were impounded over 15 years ago, and there is no significant correlation between the seismicity in these areas and reservoir impoundment. Seismicity patterns were notably different around two large reservoirs that were only impounded about 12 years ago, which may be explained by differences in reservoir storage capacity, the geologic and tectonic settings, hydrogeological characteristics, and active fault the reservoir areas. Prominent seismicity persisted around two large reservoirs that have been impounded for less than 10 years. These events were clustered and had relatively shallow focal depths. The impoundment of the Jiayan Reservoir had not officially begun during this study period, but earthquake location results suggested a high seismicity level in this reservoir area. Therefore, any seismicity in this reservoir area after the official impoundment deserves special attention.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.