{"title":"Chloride ion transport and service life prediction of aeolian sand concrete under dry–wet cycles","authors":"Wei Dong, Yajing Ji","doi":"10.1515/secm-2022-0188","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the dry–wet cycle test of chloride salt was carried out on aeolian sand concrete with different contents, and the chloride ion content in aeolian sand concrete was determined by taking powder from different depths on one side of the test block. And then combined with Monte Carlo stochastic statistical simulation and Weibull probability distribution function, the service life prediction model of aeolian sand concrete against chloride ion erosion is established. The results show that the free chloride ion content in aeolian sand concrete decreases with the increase in the depth from the surface of the specimen. At the same depth from the surface of the specimen, the free chloride ion content gradually increases with the increase in the number of dry–wet cycles. Through the analysis of life prediction, it is concluded that with the increase in aeolian sand content, the service life of aeolian sand concrete increases first and then decreases. The service life value of concrete with 75% aeolian sand content is the largest, and the greater the thickness of the protective layer, the more favorable the service life value.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0188","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In this study, the dry–wet cycle test of chloride salt was carried out on aeolian sand concrete with different contents, and the chloride ion content in aeolian sand concrete was determined by taking powder from different depths on one side of the test block. And then combined with Monte Carlo stochastic statistical simulation and Weibull probability distribution function, the service life prediction model of aeolian sand concrete against chloride ion erosion is established. The results show that the free chloride ion content in aeolian sand concrete decreases with the increase in the depth from the surface of the specimen. At the same depth from the surface of the specimen, the free chloride ion content gradually increases with the increase in the number of dry–wet cycles. Through the analysis of life prediction, it is concluded that with the increase in aeolian sand content, the service life of aeolian sand concrete increases first and then decreases. The service life value of concrete with 75% aeolian sand content is the largest, and the greater the thickness of the protective layer, the more favorable the service life value.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.