{"title":"Prograde zircon growth in migmatites","authors":"Chris Yakymchuk","doi":"10.1111/jmg.12715","DOIUrl":null,"url":null,"abstract":"<p>Empirical studies of zircon in migmatites document features compatible with growth during heating at suprasolidus conditions. However, numerical modelling of zircon behaviour suggests that suprasolidus zircon is expected to grow only during cooling and melt crystallization. Here, phase equilibrium modelling coupled with mineral–melt Zr partitioning is used in an attempt to reconcile the observations from migmatites with the predictions of previous numerical models of zircon behaviour in anatectic systems. In general, an equilibrium-based model that includes Zr partitioning does not allow prograde suprasolidus zircon growth. However, melting of metapelites at temperatures just above the wet solidus may allow limited zircon growth because of the low solubility of zircon in melt coupled with a source of Zr from minor garnet and ilmenite breakdown. Preservation of this zircon requires entrapment in growing peritectic minerals during subsequent heating and further melting. Heating above muscovite exhaustion in metapelites is unlikely to grow zircon because of the progressive increase in zircon solubility as well as an increasing compatibility of Zr in the residual mineral assemblage. The modelled compatibility of Zr in the residue of a metabasite decreases during heating, but an increase in zircon solubility in melt counteracts this; prograde suprasolidus zircon growth in metabasites is unlikely. Infiltration of Zr-rich melt into a migmatite during open-system anatexis provides an additional potential mechanism for prograde suprasolidus zircon growth during high-temperature metamorphism.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"41 5","pages":"719-743"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12715","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12715","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Empirical studies of zircon in migmatites document features compatible with growth during heating at suprasolidus conditions. However, numerical modelling of zircon behaviour suggests that suprasolidus zircon is expected to grow only during cooling and melt crystallization. Here, phase equilibrium modelling coupled with mineral–melt Zr partitioning is used in an attempt to reconcile the observations from migmatites with the predictions of previous numerical models of zircon behaviour in anatectic systems. In general, an equilibrium-based model that includes Zr partitioning does not allow prograde suprasolidus zircon growth. However, melting of metapelites at temperatures just above the wet solidus may allow limited zircon growth because of the low solubility of zircon in melt coupled with a source of Zr from minor garnet and ilmenite breakdown. Preservation of this zircon requires entrapment in growing peritectic minerals during subsequent heating and further melting. Heating above muscovite exhaustion in metapelites is unlikely to grow zircon because of the progressive increase in zircon solubility as well as an increasing compatibility of Zr in the residual mineral assemblage. The modelled compatibility of Zr in the residue of a metabasite decreases during heating, but an increase in zircon solubility in melt counteracts this; prograde suprasolidus zircon growth in metabasites is unlikely. Infiltration of Zr-rich melt into a migmatite during open-system anatexis provides an additional potential mechanism for prograde suprasolidus zircon growth during high-temperature metamorphism.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.