{"title":"A study of the evaluation metrics for generative images containing combinational creativity","authors":"Boheng Wang, Yunhuai Zhu, Liuqing Chen, Jingcheng Liu, Lingyun Sun, P. Childs","doi":"10.1017/S0890060423000069","DOIUrl":null,"url":null,"abstract":"Abstract In the field of content generation by machine, the state-of-the-art text-to-image model, DALL⋅E, has advanced and diverse capacities for the combinational image generation with specific textual prompts. The images generated by DALL⋅E seem to exhibit an appreciable level of combinational creativity close to that of humans in terms of visualizing a combinational idea. Although there are several common metrics which can be applied to assess the quality of the images generated by generative models, such as IS, FID, GIQA, and CLIP, it is unclear whether these metrics are equally applicable to assessing images containing combinational creativity. In this study, we collected the generated image data from machine (DALL⋅E) and human designers, respectively. The results of group ranking in the Consensual Assessment Technique (CAT) and the Turing Test (TT) were used as the benchmarks to assess the combinational creativity. Considering the metrics’ mathematical principles and different starting points in evaluating image quality, we introduced coincident rate (CR) and average rank variation (ARV) which are two comparable spaces. An experiment to calculate the consistency of group ranking of each metric by comparing the benchmarks then was conducted. By comparing the consistency results of CR and ARV on group ranking, we summarized the applicability of the existing evaluation metrics in assessing generative images containing combinational creativity. In the four metrics, GIQA performed the closest consistency to the CAT and TT. It shows the potential as an automated assessment for images containing combinational creativity, which can be used to evaluate the images containing combinational creativity in the relevant task of design and engineering such as conceptual sketch, digital design image, and prototyping image.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060423000069","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In the field of content generation by machine, the state-of-the-art text-to-image model, DALL⋅E, has advanced and diverse capacities for the combinational image generation with specific textual prompts. The images generated by DALL⋅E seem to exhibit an appreciable level of combinational creativity close to that of humans in terms of visualizing a combinational idea. Although there are several common metrics which can be applied to assess the quality of the images generated by generative models, such as IS, FID, GIQA, and CLIP, it is unclear whether these metrics are equally applicable to assessing images containing combinational creativity. In this study, we collected the generated image data from machine (DALL⋅E) and human designers, respectively. The results of group ranking in the Consensual Assessment Technique (CAT) and the Turing Test (TT) were used as the benchmarks to assess the combinational creativity. Considering the metrics’ mathematical principles and different starting points in evaluating image quality, we introduced coincident rate (CR) and average rank variation (ARV) which are two comparable spaces. An experiment to calculate the consistency of group ranking of each metric by comparing the benchmarks then was conducted. By comparing the consistency results of CR and ARV on group ranking, we summarized the applicability of the existing evaluation metrics in assessing generative images containing combinational creativity. In the four metrics, GIQA performed the closest consistency to the CAT and TT. It shows the potential as an automated assessment for images containing combinational creativity, which can be used to evaluate the images containing combinational creativity in the relevant task of design and engineering such as conceptual sketch, digital design image, and prototyping image.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.