Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media

Q1 Materials Science Biomedical Glasses Pub Date : 2019-01-01 DOI:10.1515/bglass-2019-0011
M. Arango-Ospina, L. Hupa, A. Boccaccini
{"title":"Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media","authors":"M. Arango-Ospina, L. Hupa, A. Boccaccini","doi":"10.1515/bglass-2019-0011","DOIUrl":null,"url":null,"abstract":"Abstract The present study reports the dissolution studies of a family of boron-doped bioactive glasses based on the composition ICIE16. Simulated body fluid (SBF), Tris-buffered solution and lactic acid were used as dissolution media for studies under static and dynamic conditions. The leaching of ions from the glasses under the evaluated conditions and media was compared and the bioactive behaviour of the glasses was evaluated. Influence of the incorporation of boron in the thermal properties of the glass was also analysed. Glasses exhibited faster bioactivity under dynamic dissolution configuration compared to static conditions. Moreover, the glass dissolution rate was faster in acidic conditions than in SBF or Tris solutions. It was found that at increasing boron content the dissolution of the glass is faster.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0011","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2019-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 33

Abstract

Abstract The present study reports the dissolution studies of a family of boron-doped bioactive glasses based on the composition ICIE16. Simulated body fluid (SBF), Tris-buffered solution and lactic acid were used as dissolution media for studies under static and dynamic conditions. The leaching of ions from the glasses under the evaluated conditions and media was compared and the bioactive behaviour of the glasses was evaluated. Influence of the incorporation of boron in the thermal properties of the glass was also analysed. Glasses exhibited faster bioactivity under dynamic dissolution configuration compared to static conditions. Moreover, the glass dissolution rate was faster in acidic conditions than in SBF or Tris solutions. It was found that at increasing boron content the dissolution of the glass is faster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含硼生物活性玻璃在静态和动态条件下在不同介质中的生物活性和溶解行为
摘要本研究报道了一类基于组合物ICIE16的硼掺杂生物活性玻璃的溶解研究。在静态和动态条件下,使用模拟体液(SBF)、Tris缓冲溶液和乳酸作为溶解介质进行研究。比较了在所评估的条件和介质下从玻璃中浸出离子的情况,并评估了玻璃的生物活性行为。还分析了硼的掺入对玻璃热性能的影响。与静态条件相比,玻璃在动态溶解配置下表现出更快的生物活性。此外,玻璃在酸性条件下的溶解速率比在SBF或Tris溶液中更快。研究发现,随着硼含量的增加,玻璃的溶解速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
期刊最新文献
Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering Novel borosilicate bioactive scaffolds with persistent luminescence Modelling the elastic mechanical properties of bioactive glass-derived scaffolds Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities Yttrium doped phosphate-based glasses: structural and degradation analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1