An Investigation into the Thermal Boundary Resistance Associated with the Twin Boundary in Bismuth Telluride

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL Nanoscale and Microscale Thermophysical Engineering Pub Date : 2018-12-31 DOI:10.1080/15567265.2018.1561771
I. Hsieh, Mei-Jiau Huang
{"title":"An Investigation into the Thermal Boundary Resistance Associated with the Twin Boundary in Bismuth Telluride","authors":"I. Hsieh, Mei-Jiau Huang","doi":"10.1080/15567265.2018.1561771","DOIUrl":null,"url":null,"abstract":"ABSTRACT The thermal boundary resistances (TBRs) of twin boundaries occurring at three different atomic layers (Te1, Bi, and Te2) of bismuth telluride (Bi2Te3) are investigated in use of the non-equilibrium molecular dynamics (NEMD) simulation method. The simulation results show that among all, the Te1-twin boundaries bring about a lowest interfacial energy corresponding to a most stable system, which explains why this type of twin boundaries is mostly often observed in the laboratory; the Te2-twin boundaries on the other hand possess a largest interfacial energy, resulting in a least stable system. The order in magnitude of the TBRs associated with these three types of twin boundaries is Te2-twin > Bi-twin > Te1-twin. Moreover, the TBR associated with a pair of twin boundaries separated by a distance of 4 unit cell (UC) is found to be about twice as large as that of a single twin boundary of the same type. It implies that the mutual coupling, which causes an increase in TBRs, may be ignored and the effect of twin boundaries may be counted individually as long as the separation distance is larger than 4 UC.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"36 - 47"},"PeriodicalIF":2.7000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1561771","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1561771","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT The thermal boundary resistances (TBRs) of twin boundaries occurring at three different atomic layers (Te1, Bi, and Te2) of bismuth telluride (Bi2Te3) are investigated in use of the non-equilibrium molecular dynamics (NEMD) simulation method. The simulation results show that among all, the Te1-twin boundaries bring about a lowest interfacial energy corresponding to a most stable system, which explains why this type of twin boundaries is mostly often observed in the laboratory; the Te2-twin boundaries on the other hand possess a largest interfacial energy, resulting in a least stable system. The order in magnitude of the TBRs associated with these three types of twin boundaries is Te2-twin > Bi-twin > Te1-twin. Moreover, the TBR associated with a pair of twin boundaries separated by a distance of 4 unit cell (UC) is found to be about twice as large as that of a single twin boundary of the same type. It implies that the mutual coupling, which causes an increase in TBRs, may be ignored and the effect of twin boundaries may be counted individually as long as the separation distance is larger than 4 UC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碲化铋双晶界热边界电阻的研究
摘要采用非平衡分子动力学(NEMD)模拟方法研究了碲化铋(Bi2Te3)三种不同原子层(Te1、Bi和Te2)孪晶界的热边界电阻(TBRs)。模拟结果表明,其中te1 -孪晶界的界面能最低,对应于一个最稳定的体系,这解释了为什么这种类型的孪晶界在实验室中最常见;另一方面,te2 -孪晶界具有最大的界面能,导致系统最不稳定。与这三种类型的孪晶界相关的tbr的大小顺序是Te2-twin > - Bi-twin > Te1-twin。此外,发现距离为4个单位胞(UC)的一对孪晶界的TBR大约是相同类型的单个孪晶界的两倍。这意味着,只要分离距离大于4uc,可以忽略导致tbr增加的相互耦合,单独计算孪晶界的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
期刊最新文献
Mesoscopic Study on Effective Thermal Conductivity of Aerogel Based on a Modified LBM Thermoelectric Phenomena in a Magnetic Heterostructure with AAH Modulation: Charge and Spin Figure of Merits Coupling of Surface Plasmon Polaritons and Hyperbolic Phonon Polaritons on the Near-Field Radiative Heat Transfer Between Multilayer Graphene/hBN Structures Thermodynamic control the self-assembled formation of vertically aligned nanocomposite thin film Elasto-Thermodiffusive Microtemperature Model Induced by a Mechanical Ramp-Type of Nanoscale Photoexcited Semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1