{"title":"Numerical study of desalination by Sweeping Gas Membrane Distillation","authors":"Nizar Loussif, J. Orfi","doi":"10.12989/MWT.2020.11.5.353","DOIUrl":null,"url":null,"abstract":"The present study deals with a numerical investigation of heat and mass transfer in a Sweeping Gas Membrane Distillation (SGMD) used for desalination. The governing equations expressing the conservation of mass, momentum, energy and species with coupled boundary conditions were solved numerically. The slip boundary condition applied on the feed saline solution-hydrophobic membrane interface is taken into consideration showing its effects on profiles and process parameters.The numerical model was validated with available experimental data and was found to be in good agreement particularly when the slip condition is considered. The results of the simulations highlighted the effect of slip boundary condition on the velocity and temperature distributions as well as the process effectiveness. They showed in particular that as the slip length increases, the permeate flux of fresh water and process thermal efficiency rise.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2020.11.5.353","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The present study deals with a numerical investigation of heat and mass transfer in a Sweeping Gas Membrane Distillation (SGMD) used for desalination. The governing equations expressing the conservation of mass, momentum, energy and species with coupled boundary conditions were solved numerically. The slip boundary condition applied on the feed saline solution-hydrophobic membrane interface is taken into consideration showing its effects on profiles and process parameters.The numerical model was validated with available experimental data and was found to be in good agreement particularly when the slip condition is considered. The results of the simulations highlighted the effect of slip boundary condition on the velocity and temperature distributions as well as the process effectiveness. They showed in particular that as the slip length increases, the permeate flux of fresh water and process thermal efficiency rise.
期刊介绍:
The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.