An integrated oxygen electrode derived from a flexible single-walled carbon nanotube film for rechargeable Zn-air batteries produced by electropolymerization
{"title":"An integrated oxygen electrode derived from a flexible single-walled carbon nanotube film for rechargeable Zn-air batteries produced by electropolymerization","authors":"Yu Meng, Yi-Ming Zhao, Jin-Cheng Li, Chao Shi, Lili Zhang, Peng-Xiang Hou, Chang Liu, Hui-Ming Cheng","doi":"10.1038/s41427-022-00441-0","DOIUrl":null,"url":null,"abstract":"The development of low-cost, high-activity, and durable integrated bifunctional flexible air electrodes for use in Zn-air batteries is both challenging and important. We report a simple and scalable electropolymerization method used to prepare an electrode material comprising heavily N-doped carbon covering single-walled carbon nanotube (N/C-SWCNT) networks. The resulting core/shell structure of the hybrid electrode enabled the flexibility, mechanics, and three-dimensional interconnected porous structure of SWCNT films while containing abundant pyridinic N, which provided excellent catalytic activity for both the oxygen reduction and evolution reactions (overpotential gap = 0.76 V). A binder-free Zn-air battery using the N/C-SWCNT film as an oxygen electrode was assembled and showed a high peak power density of 181 mW/cm2, a high specific capacity of 810 mAh/g and stable discharge‒charge cycling performance. We also constructed a flexible solid-state Zn-air battery featuring not only a high power density of 22 mW/cm2 but also good flexibility and stability. A core/shell structured hybrid film comprised of N-doped carbon covering on single-wall carbon nanotubes (SWCNTs) were synthesized by a rapid electropolymerization method, which not only contains abundant exposed pyridinic N that leads to excellent catalytic activity for both ORR and OER, but also perfectly inherits the high conductivity, excellent flexibility, and porous structure of original SWCNT film, making it a desirable integrated oxygen electrode for Zn-air batteries.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-9"},"PeriodicalIF":8.3000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-022-00441-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-022-00441-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of low-cost, high-activity, and durable integrated bifunctional flexible air electrodes for use in Zn-air batteries is both challenging and important. We report a simple and scalable electropolymerization method used to prepare an electrode material comprising heavily N-doped carbon covering single-walled carbon nanotube (N/C-SWCNT) networks. The resulting core/shell structure of the hybrid electrode enabled the flexibility, mechanics, and three-dimensional interconnected porous structure of SWCNT films while containing abundant pyridinic N, which provided excellent catalytic activity for both the oxygen reduction and evolution reactions (overpotential gap = 0.76 V). A binder-free Zn-air battery using the N/C-SWCNT film as an oxygen electrode was assembled and showed a high peak power density of 181 mW/cm2, a high specific capacity of 810 mAh/g and stable discharge‒charge cycling performance. We also constructed a flexible solid-state Zn-air battery featuring not only a high power density of 22 mW/cm2 but also good flexibility and stability. A core/shell structured hybrid film comprised of N-doped carbon covering on single-wall carbon nanotubes (SWCNTs) were synthesized by a rapid electropolymerization method, which not only contains abundant exposed pyridinic N that leads to excellent catalytic activity for both ORR and OER, but also perfectly inherits the high conductivity, excellent flexibility, and porous structure of original SWCNT film, making it a desirable integrated oxygen electrode for Zn-air batteries.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.