S. Salehuddin, S. Zaini, M. A. Megat Johari, N. L. Rahim, M. A. Rahim
{"title":"Experimental Investigation on the Effectiveness of Truss-Shaped Punching Shear Reinforcement in Flat Slab","authors":"S. Salehuddin, S. Zaini, M. A. Megat Johari, N. L. Rahim, M. A. Rahim","doi":"10.5614/j.eng.technol.sci.2022.54.4.2","DOIUrl":null,"url":null,"abstract":"The use of reinforced concrete flat slabs in building construction increases the floor-to-floor clearance, expedites site operations, and offers aesthetically rewarding features. However, punching shear failure in a flat slab is brittle in nature and can be potentially catastrophic. Many studies have been conducted to improve the punching shear capacity of flat slabs but some of the proposed punching shear reinforcements were complicated and costly. This research aimed to evaluate the effectiveness of a simple and cost-effective; truss-shaped punching shear reinforcement embedded in a 1200 mm × 1200 mm × 175 mm thick flat slab specimen. Three types of truss-shaped punching shear reinforcements were prepared. All specimens were supported at the edges and subjected to gravity load tests. The results showed that the introduction of truss-shaped punching shear reinforcement increased the punching shear capacity in the range of 7.71% to 21.47%. The maximum deflection of these specimens exhibited an insignificant increase compared to the control specimen, suggesting that punching failure governed the ultimate behavior. The additional strength offered by truss-shaped punching shear reinforcement makes flat slabs as a construction material more appealing because they allow them to withstand higher design loads.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2022.54.4.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of reinforced concrete flat slabs in building construction increases the floor-to-floor clearance, expedites site operations, and offers aesthetically rewarding features. However, punching shear failure in a flat slab is brittle in nature and can be potentially catastrophic. Many studies have been conducted to improve the punching shear capacity of flat slabs but some of the proposed punching shear reinforcements were complicated and costly. This research aimed to evaluate the effectiveness of a simple and cost-effective; truss-shaped punching shear reinforcement embedded in a 1200 mm × 1200 mm × 175 mm thick flat slab specimen. Three types of truss-shaped punching shear reinforcements were prepared. All specimens were supported at the edges and subjected to gravity load tests. The results showed that the introduction of truss-shaped punching shear reinforcement increased the punching shear capacity in the range of 7.71% to 21.47%. The maximum deflection of these specimens exhibited an insignificant increase compared to the control specimen, suggesting that punching failure governed the ultimate behavior. The additional strength offered by truss-shaped punching shear reinforcement makes flat slabs as a construction material more appealing because they allow them to withstand higher design loads.
期刊介绍:
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.