In silico modeling and in vitro activity of vitexin and isovitexin against SGLT2

IF 2.4 Q3 Computer Science Journal of Theoretical & Computational Chemistry Pub Date : 2019-11-01 DOI:10.1142/s0219633619500354
Yongheng Shi, Fancui Meng, Ji-ping Liu, Bin Wang
{"title":"In silico modeling and in vitro activity of vitexin and isovitexin against SGLT2","authors":"Yongheng Shi, Fancui Meng, Ji-ping Liu, Bin Wang","doi":"10.1142/s0219633619500354","DOIUrl":null,"url":null,"abstract":"The homology model of hSGLT2 (human sodium dependent glucose co-transporter 2) was used as a target for diabetes mellitus. Molecular docking and dynamics simulations were carried out on vitexin- and isovitexin-SGLT2 complexes with dapagliflozin as positive control. The results show that both vitexin and isovitexin have weaker binding energies compared to dapagliflozin, indicating that both ligands may exhibit weak anti-diabetic effects through inhibiting SGLT2. The poor binding mode of vitexin and isovitexin may be responsible for their weak anti-diabetic effect. These results are in accordance with the inhibitory activity against hSGLT2 in vitro test with the inhibitory rate 26.3% of vitexin and 11.2% of isovitexin at the dose of 10[Formula: see text][Formula: see text]mol[Formula: see text][Formula: see text][Formula: see text]L[Formula: see text]. The results of calculation and in vitro test may explain the possible inhibiting mechanism of vitexin and isovitexin against SGLT2, and therefore enhance our understanding of the structure-activity relationships of SGLT2 inhibitors.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633619500354","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633619500354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

The homology model of hSGLT2 (human sodium dependent glucose co-transporter 2) was used as a target for diabetes mellitus. Molecular docking and dynamics simulations were carried out on vitexin- and isovitexin-SGLT2 complexes with dapagliflozin as positive control. The results show that both vitexin and isovitexin have weaker binding energies compared to dapagliflozin, indicating that both ligands may exhibit weak anti-diabetic effects through inhibiting SGLT2. The poor binding mode of vitexin and isovitexin may be responsible for their weak anti-diabetic effect. These results are in accordance with the inhibitory activity against hSGLT2 in vitro test with the inhibitory rate 26.3% of vitexin and 11.2% of isovitexin at the dose of 10[Formula: see text][Formula: see text]mol[Formula: see text][Formula: see text][Formula: see text]L[Formula: see text]. The results of calculation and in vitro test may explain the possible inhibiting mechanism of vitexin and isovitexin against SGLT2, and therefore enhance our understanding of the structure-activity relationships of SGLT2 inhibitors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卵黄蛋白和异卵黄蛋白对SGLT2的体外活性及计算机模拟
采用hSGLT2(人钠依赖性葡萄糖共转运蛋白2)的同源性模型作为糖尿病的靶点。以达格列净为阳性对照,对牡荆素-和异牡荆素- sglt2配合物进行分子对接和动力学模拟。结果表明,与达格列净相比,牡荆素和异牡荆素的结合能较弱,表明这两种配体可能通过抑制SGLT2而表现出较弱的抗糖尿病作用。牡荆素和异牡荆素的结合方式较差,可能是其抗糖尿病作用较弱的原因。这些结果与体外对hSGLT2的抑制活性一致,在10剂量下,牡荆素的抑制率为26.3%,异牡荆素的抑制率为11.2%[公式:见文][公式:见文]mol[公式:见文][公式:见文][公式:见文][公式:见文]L[公式:见文]。计算和体外实验的结果可能解释牡荆素和异牡荆素对SGLT2可能的抑制机制,从而加深我们对SGLT2抑制剂构效关系的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry. JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem. Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.
期刊最新文献
A TD-DFT Study for the Excited State Calculations of Microhydration of N-Acetyl-Phenylalaninylamide (NAPA) Design of New Thiadiazole Derivatives with Improved Antidiabetic Activity Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models The in vitro anti-Leishmania Effect of Zingiber officinale Extract on Promastigotes and Amastigotes of Leishmania major and Leishmania tropica In Silico Docking of Rhodanine Derivatives and 3D-QSAR Study to Identify Potent Prostate Cancer Inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1