Squeezing of nonlinear spin observables by one axis twisting in the presence of decoherence: An analytical study

IF 1.3 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Comptes Rendus Physique Pub Date : 2021-12-03 DOI:10.5802/crphys.103
Youcef Baamara, A. Sinatra, Manuel Gessner Lkb, Icfo
{"title":"Squeezing of nonlinear spin observables by one axis twisting in the presence of decoherence: An analytical study","authors":"Youcef Baamara, A. Sinatra, Manuel Gessner Lkb, Icfo","doi":"10.5802/crphys.103","DOIUrl":null,"url":null,"abstract":"In an ensemble of two-level atoms that can be described in terms of a collective spin, entangled states can be used to enhance the sensitivity of interferometric precision measurements. While non-Gaussian spin states can produce larger quantum enhancements than spin-squeezed Gaussian states, their use requires the measurement of observables that are nonlinear functions of the three components of the collective spin. In this paper we develop strategies that achieve the optimal quantum enhancements using non-Gaussian states produced by a nonlinear one-axis-twisting Hamiltonian, and show that measurement-after-interaction techniques, known to amplify the output signals in quantum parameter estimation protocols, are effective in measuring nonlinear spin observables. Including the presence of the relevant decoherence processes from atomic experiments, we determine analytically the quantum enhancement of non-Gaussian over-squeezed states as a function of the noise parameters for arbitrary atom numbers.","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.103","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 7

Abstract

In an ensemble of two-level atoms that can be described in terms of a collective spin, entangled states can be used to enhance the sensitivity of interferometric precision measurements. While non-Gaussian spin states can produce larger quantum enhancements than spin-squeezed Gaussian states, their use requires the measurement of observables that are nonlinear functions of the three components of the collective spin. In this paper we develop strategies that achieve the optimal quantum enhancements using non-Gaussian states produced by a nonlinear one-axis-twisting Hamiltonian, and show that measurement-after-interaction techniques, known to amplify the output signals in quantum parameter estimation protocols, are effective in measuring nonlinear spin observables. Including the presence of the relevant decoherence processes from atomic experiments, we determine analytically the quantum enhancement of non-Gaussian over-squeezed states as a function of the noise parameters for arbitrary atom numbers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
退相干条件下单轴扭曲对非线性自旋可观测值的压缩:一项分析研究
在可以用集体自旋来描述的两能级原子系综中,纠缠态可以用来提高干涉精度测量的灵敏度。虽然非高斯自旋态可以产生比自旋压缩高斯态更大的量子增强,但它们的使用需要测量可观察性,这是集体自旋三个分量的非线性函数。在本文中,我们开发了使用非线性单轴扭曲哈密顿量产生的非高斯态实现最佳量子增强的策略,并表明在量子参数估计协议中已知的放大输出信号的测量后相互作用技术在测量非线性自旋可观察性方面是有效的。包括原子实验中相关退相干过程的存在,我们解析地确定了非高斯过压缩态的量子增强,作为任意原子数的噪声参数的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Comptes Rendus Physique
Comptes Rendus Physique 物理-天文与天体物理
CiteScore
2.80
自引率
0.00%
发文量
13
审稿时长
17.2 weeks
期刊介绍: The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences. Its objective is to enable researchers to quickly share their work with the international scientific community. The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity. From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication. The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.
期刊最新文献
Vibrations and Heat Transfer in Glasses: The Role Played by Disorder Astronomy, Atmospheres and Refraction: Foreword Detection of exoplanets: exploiting each property of light Organic Glass-Forming Liquids and the Concept of Fragility Hunting for Cold Exoplanets via Microlensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1