Ecofriendly Synthesis and Characterization of Magnesium based Metal - Organic Frame Work

Q4 Materials Science Journal of Surface Science and Technology Pub Date : 2023-02-15 DOI:10.18311/jsst/2021/28590
O. Lekshmy, K. S. Beena Kumari, R. Sudha Devi
{"title":"Ecofriendly Synthesis and Characterization of Magnesium based Metal - Organic Frame Work","authors":"O. Lekshmy, K. S. Beena Kumari, R. Sudha Devi","doi":"10.18311/jsst/2021/28590","DOIUrl":null,"url":null,"abstract":"Magnesium based metal - organic Framework (MOF) was synthesized by using Benzene Di-Carboxylic acid (BDC), MgSO4.7H2O and a flower extract of Clitoria ternatea. The prepared MOF was characterized by FTIR spectrum, SEM-EDS, XRD, DLS and PL Spectrum. The crystalline nature of the synthesized MOF was revealed in XRD patterns. The nano particle nature of the MOF was confirmed from the SEM pictures. FT-IR spectra showed a peak at 520cm-1 designated characteristic absorption bands of synthesized Mg-MOF nano particles. The zeta potential value showed that the surface charge of the synthesized MOF is neutral and hence disperse in solution without having any tendency for agglomeration and coagulation on standing. The photoluminescence spectra indicated luminescent nature and hence this nano crystalline MOF finds very good application as luminescent material and as sensing material.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/jsst/2021/28590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium based metal - organic Framework (MOF) was synthesized by using Benzene Di-Carboxylic acid (BDC), MgSO4.7H2O and a flower extract of Clitoria ternatea. The prepared MOF was characterized by FTIR spectrum, SEM-EDS, XRD, DLS and PL Spectrum. The crystalline nature of the synthesized MOF was revealed in XRD patterns. The nano particle nature of the MOF was confirmed from the SEM pictures. FT-IR spectra showed a peak at 520cm-1 designated characteristic absorption bands of synthesized Mg-MOF nano particles. The zeta potential value showed that the surface charge of the synthesized MOF is neutral and hence disperse in solution without having any tendency for agglomeration and coagulation on standing. The photoluminescence spectra indicated luminescent nature and hence this nano crystalline MOF finds very good application as luminescent material and as sensing material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镁基金属有机骨架的环保合成与表征
以苯二羧酸(BDC)、硫酸镁(MgSO4·7H2O)和虎耳草(Clitoria ternatea)花提取物为原料,合成了镁基金属有机骨架(MOF)。通过红外光谱、SEM-EDS、XRD、DLS和PL光谱对制备的MOF进行了表征。XRD图谱显示了合成的MOF的结晶性质。从SEM照片证实了MOF的纳米粒子性质。合成的Mg-MOF纳米粒子的FT-IR光谱在520cm-1处有一个峰,指定了其特征吸收带。ζ电位值表明,合成的MOF的表面电荷是中性的,因此分散在溶液中,在静置时没有任何团聚和凝结的趋势。光致发光光谱表明了发光性质,因此这种纳米晶体MOF作为发光材料和传感材料具有非常好的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction
期刊最新文献
Revealing melt-vapor-powder interaction towards laser powder bed fusion process via DEM-CFD coupled model Progress and challenges in energy storage and utilization via ammonia Deposition of DLC film on the inner surface of N80 pipeline by hollow cathode PECVD Improving activity and barrier properties of epoxy modified polyurethane coating with in-situ polymerized polypyrrole functionalized graphene oxide Machined surface formation and integrity control technology of SiCp/Al composites: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1