Highly thermally conductive polyamide 6 composites with favorable mechanical properties, processability and low water absorption using a hybrid filling of short carbon fiber, flake graphite and expanded graphite

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE Journal of Polymer Engineering Pub Date : 2023-07-31 DOI:10.1515/polyeng-2023-0117
Bao-Gang Fu, Long-Xi Yang, Wenwen Xiang, Xiaoxuan Zou, Wenli Dai
{"title":"Highly thermally conductive polyamide 6 composites with favorable mechanical properties, processability and low water absorption using a hybrid filling of short carbon fiber, flake graphite and expanded graphite","authors":"Bao-Gang Fu, Long-Xi Yang, Wenwen Xiang, Xiaoxuan Zou, Wenli Dai","doi":"10.1515/polyeng-2023-0117","DOIUrl":null,"url":null,"abstract":"Abstract It is a challenge to maintain the mechanical properties and processability of thermally conductive polymer composites in the presence of high filling of heat conductive filler. An optimized hybrid filler system composed of flake graphite (FG), expanded graphite (EG) and short carbon fiber (CF) was introduced into PA6 matrix. The addition of EG to PA6 was found to be more effective in improving its thermal conductivity, while the addition of FG maintained favorable processability due to its lubrication effect. Furthermore, the hybrid filling of FG and EG has a synergistic effect on the enhancement of thermal conductivity. The ternary filling of FG, EG and CF produced highly heat conductive PA6 composites with high strength, favorable processability, and low water absorption. The thermal conductivity of 10CF/20FG/10EG/PA6 composite reached 3.45 W/m k, which is 12.3 times of pure PA6. Additionally, the flexural strength increased to 110 MPa, which is 37 % higher than that of pure PA6, and the water absorption was reduced to one quarter that of pure PA6.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0117","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract It is a challenge to maintain the mechanical properties and processability of thermally conductive polymer composites in the presence of high filling of heat conductive filler. An optimized hybrid filler system composed of flake graphite (FG), expanded graphite (EG) and short carbon fiber (CF) was introduced into PA6 matrix. The addition of EG to PA6 was found to be more effective in improving its thermal conductivity, while the addition of FG maintained favorable processability due to its lubrication effect. Furthermore, the hybrid filling of FG and EG has a synergistic effect on the enhancement of thermal conductivity. The ternary filling of FG, EG and CF produced highly heat conductive PA6 composites with high strength, favorable processability, and low water absorption. The thermal conductivity of 10CF/20FG/10EG/PA6 composite reached 3.45 W/m k, which is 12.3 times of pure PA6. Additionally, the flexural strength increased to 110 MPa, which is 37 % higher than that of pure PA6, and the water absorption was reduced to one quarter that of pure PA6.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以短碳纤维、鳞片石墨和膨胀石墨为填料制备高导热聚酰胺6复合材料,具有良好的机械性能、加工性能和低吸水率
摘要在导热填料高填充的情况下,如何保持导热聚合物复合材料的力学性能和可加工性是一项挑战。将片状石墨(FG)、膨胀石墨(EG)和短碳纤维(CF)组成的复合填料体系引入到PA6基体中。在PA6中添加EG可以更有效地提高其导热性,而添加FG则由于其润滑作用而保持了良好的加工性。此外,FG和EG的混合填充对导热系数的增强具有协同效应。FG、EG、CF三元填充制得高导热PA6复合材料,强度高,加工性能好,吸水率低。10CF/20FG/10EG/PA6复合材料的导热系数达到3.45 W/m k,是纯PA6的12.3倍。抗折强度达到110 MPa,比纯PA6提高了37 %,吸水率降低到纯PA6的1 / 4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymer Engineering
Journal of Polymer Engineering 工程技术-高分子科学
CiteScore
3.20
自引率
5.00%
发文量
95
审稿时长
2.5 months
期刊介绍: Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
期刊最新文献
Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams Low thickness electromagnetic wave absorbing polyurethane and IIR composites by interfacial polarization of multi-layer structure Synthesis and properties of reed-based polyurethane (PU) coating Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1