Effect of Copper Substitution on the Electrocatalytic Activity of ZnMn2O4 Spinel Embedded on Reduced Graphene Oxide Nanosheet for the Oxygen Evolution Process

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Surveys from Asia Pub Date : 2023-02-07 DOI:10.1007/s10563-023-09389-9
Salma Aman, Naseeb Ahmad, Sumaira Manzoor, Meznah M. Alanazi, Shaimaa A. M. Abdelmohsen, Rabia Yasmin Khosa, Abdullah G. Al-Sehemi, Ruimao Hua, Huda A. Alzahrani, Adeel Hussain Chughtai
{"title":"Effect of Copper Substitution on the Electrocatalytic Activity of ZnMn2O4 Spinel Embedded on Reduced Graphene Oxide Nanosheet for the Oxygen Evolution Process","authors":"Salma Aman,&nbsp;Naseeb Ahmad,&nbsp;Sumaira Manzoor,&nbsp;Meznah M. Alanazi,&nbsp;Shaimaa A. M. Abdelmohsen,&nbsp;Rabia Yasmin Khosa,&nbsp;Abdullah G. Al-Sehemi,&nbsp;Ruimao Hua,&nbsp;Huda A. Alzahrani,&nbsp;Adeel Hussain Chughtai","doi":"10.1007/s10563-023-09389-9","DOIUrl":null,"url":null,"abstract":"<div><p>The fabrication of a proficient and durable electrocatalyst for the OER process is the most crucial parameter in the water splitting process. A simple and basic procedure was used in this study to create Cu-substituted ZnMn<sub>2</sub>O<sub>4</sub>/rGO spinel nanosized composite as an electrode for OER. The morphological and structural investigations indicate that the carbon based spinel successfully bonds, and the addition of copper into rGO results in a substantial change in its electrocatalytic process for the oxygen evolution process. Zn<sub>1−x</sub>Cu<sub>x</sub>Mn<sub>2</sub>O<sub>4</sub>/rGO with x = 0.6 has a minimal overpotential of 150 mV at a current density of 10 mAcm<sup>−2</sup>, low onset potential of 1.40 V and a smaller Tafel slope of 31 mV dec<sup>−1</sup> than other substitution. The electrocatalyst also exhibits high ECSA (632.5 cm<sup>2</sup>), R<sub>f</sub> (1580), and exceptional stability, all of which improve OER performance. These analysis confirm the enhanced electrocatalytic efficiency of the hybrid material to catalyze OER for energy generation, and other fields.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 2","pages":"165 - 179"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-023-09389-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

Abstract

The fabrication of a proficient and durable electrocatalyst for the OER process is the most crucial parameter in the water splitting process. A simple and basic procedure was used in this study to create Cu-substituted ZnMn2O4/rGO spinel nanosized composite as an electrode for OER. The morphological and structural investigations indicate that the carbon based spinel successfully bonds, and the addition of copper into rGO results in a substantial change in its electrocatalytic process for the oxygen evolution process. Zn1−xCuxMn2O4/rGO with x = 0.6 has a minimal overpotential of 150 mV at a current density of 10 mAcm−2, low onset potential of 1.40 V and a smaller Tafel slope of 31 mV dec−1 than other substitution. The electrocatalyst also exhibits high ECSA (632.5 cm2), Rf (1580), and exceptional stability, all of which improve OER performance. These analysis confirm the enhanced electrocatalytic efficiency of the hybrid material to catalyze OER for energy generation, and other fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜取代对还原氧化石墨烯纳米片上ZnMn2O4尖晶石电催化活性的影响
制备一种高效耐用的OER电催化剂是水裂解工艺中最关键的参数。本研究采用一种简单而基本的方法制备了cu取代ZnMn2O4/rGO尖晶石纳米复合材料作为OER电极。形态和结构研究表明,碳基尖晶石成功结合,铜的加入使其电催化析氧过程发生了实质性的变化。当x = 0.6时,Zn1−xCuxMn2O4/rGO在电流密度为10 mAcm−2时的过电位最小为150 mV,起始电位低至1.40 V, Tafel斜率为31 mV dec−1。电催化剂还具有高ECSA (632.5 cm2), Rf(1580)和优异的稳定性,所有这些都提高了OER性能。这些分析证实了混合材料在催化OER用于发电等领域的电催化效率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
期刊最新文献
Modified Montmorillonite Catalysed Ultrasonic Assisted one-pot Synthesis of Novel 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7H)-ones as Potential Anticancer Agents Oxidized-Sulfur Decorated Two-Dimensional Cobalt(II) Porphyrin Covalent Organic Framework as a Photocatalyst and Proof-on Action Study in Oxidative Cyclization of Thioamide In-situ/Operando Mössbauer Spectroscopic Investigations of Fe-involved Metal Hydroxide-Based OER Electrocatalysts A Review on Graphene Oxide-Based Ferrite Nanocomposites for Catalytic Applications Progress on the Catalysts for the Gas-Phase Carbonylation Synthesis of Dimethyl Carbonate from Methyl Nitrite and CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1