R. Teixeira, Beatriz Martinez-Pastor, M. Nogal, A. O'Connor
{"title":"Metamodel-based metaheuristics in optimal responsive adaptation and recovery of traffic networks","authors":"R. Teixeira, Beatriz Martinez-Pastor, M. Nogal, A. O'Connor","doi":"10.1080/23789689.2022.2029325","DOIUrl":null,"url":null,"abstract":"ABSTRACT Different emerging threats highlighted the relevance of recovery and adaptation modelling in the functioning of societal systems. However, as modelling of systems becomes more complex, its effort increases challenging the practicality of the engineering analyses required for efficient recovery and adaptation. In the present work, metamodels are researched as a tool to enable these analyses in traffic networks. One of the main advantages of metamodeling is their synergy with the short decision times required in recovery and adaptation. A sequential global metamodeling technique is proposed and applied to three macroscopic day-to-day user-equilibrium models. Two reference contexts of application are researched: optimal recovery to a perturbation (with response times reduced by 98% with loss of accuracy lower than 1%) and adaptation under uncertainty with perturbation-dependent optimality. Results show that metamodeling-based metaheuristics enable fast resource-intensive engineering analyses of traffic recovery and adaptation, which may change the paradigm of decision-making in this field","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":"7 1","pages":"756 - 774"},"PeriodicalIF":2.7000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2022.2029325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Different emerging threats highlighted the relevance of recovery and adaptation modelling in the functioning of societal systems. However, as modelling of systems becomes more complex, its effort increases challenging the practicality of the engineering analyses required for efficient recovery and adaptation. In the present work, metamodels are researched as a tool to enable these analyses in traffic networks. One of the main advantages of metamodeling is their synergy with the short decision times required in recovery and adaptation. A sequential global metamodeling technique is proposed and applied to three macroscopic day-to-day user-equilibrium models. Two reference contexts of application are researched: optimal recovery to a perturbation (with response times reduced by 98% with loss of accuracy lower than 1%) and adaptation under uncertainty with perturbation-dependent optimality. Results show that metamodeling-based metaheuristics enable fast resource-intensive engineering analyses of traffic recovery and adaptation, which may change the paradigm of decision-making in this field
期刊介绍:
Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities.
Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.