Dynamics of market making algorithms in dealer markets: Learning and tacit collusion

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE Mathematical Finance Pub Date : 2023-05-30 DOI:10.1111/mafi.12401
Rama Cont, Wei Xiong
{"title":"Dynamics of market making algorithms in dealer markets: Learning and tacit collusion","authors":"Rama Cont,&nbsp;Wei Xiong","doi":"10.1111/mafi.12401","DOIUrl":null,"url":null,"abstract":"<p>The widespread use of market-making algorithms in electronic over-the-counter markets may give rise to unexpected effects resulting from the autonomous learning dynamics of these algorithms. In particular the possibility of “tacit collusion” among market makers has increasingly received regulatory scrutiny. We model the interaction of market makers in a dealer market as a stochastic differential game of intensity control with partial information and study the resulting dynamics of bid-ask spreads. Competition among dealers is modeled as a Nash equilibrium, while collusion is described in terms of Pareto optima. Using a decentralized multi-agent deep reinforcement learning algorithm to model how competing market makers learn to adjust their quotes, we show that the interaction of market making algorithms via market prices, without any sharing of information, may give rise to tacit collusion, with spread levels strictly above the competitive equilibrium level.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"34 2","pages":"467-521"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12401","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12401","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread use of market-making algorithms in electronic over-the-counter markets may give rise to unexpected effects resulting from the autonomous learning dynamics of these algorithms. In particular the possibility of “tacit collusion” among market makers has increasingly received regulatory scrutiny. We model the interaction of market makers in a dealer market as a stochastic differential game of intensity control with partial information and study the resulting dynamics of bid-ask spreads. Competition among dealers is modeled as a Nash equilibrium, while collusion is described in terms of Pareto optima. Using a decentralized multi-agent deep reinforcement learning algorithm to model how competing market makers learn to adjust their quotes, we show that the interaction of market making algorithms via market prices, without any sharing of information, may give rise to tacit collusion, with spread levels strictly above the competitive equilibrium level.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交易商市场中做市算法的动态:学习与隐性串谋
电子场外交易市场中做市商算法的广泛使用可能会因这些算法的自主学习动力而产生意想不到的效果。特别是做市商之间可能存在的 "默契串通",越来越受到监管机构的关注。我们将交易商市场中做市商之间的互动建模为具有部分信息的强度控制随机微分博弈,并研究由此产生的买卖价差动态。交易商之间的竞争被模拟为纳什均衡,而串通则用帕累托最优来描述。我们使用分散的多代理深度强化学习算法来模拟相互竞争的做市商如何学习调整报价,结果表明,在不共享任何信息的情况下,做市商算法通过市场价格进行的互动可能会导致默契合谋,价差水平严格高于竞争均衡水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
期刊最新文献
Issue Information Designing stablecoins Systemic risk in markets with multiple central counterparties Joint calibration to SPX and VIX options with signature‐based models Dynamic equilibrium with insider information and general uninformed agent utility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1