Diversity and species composition of microbiota associated with dengue mosquito breeding habitats: A cross-sectional study from selected areas in Udapalatha MOH division, Sri Lanka
{"title":"Diversity and species composition of microbiota associated with dengue mosquito breeding habitats: A cross-sectional study from selected areas in Udapalatha MOH division, Sri Lanka","authors":"J. Kumari, L. D. Amarasinghe, H. Ranasinghe","doi":"10.4103/1995-7645.380722","DOIUrl":null,"url":null,"abstract":"Objective: To determine the diversity of microbiota associated with different breeding habitats of dengue vector mosquitoes Aedes (Ae.) aegypti and Ae. albopictus and to identify any parasitic, epibiont, pathogenic, competitive or predatory species. Methods: Sampling was performed from a variety of breeding habitats using dipping, pipetting and siphoning techniques. Microbiota in water samples were preserved using Rose Bengal solution and Lugol’s iodine, and were identified. Live samples of microbiota were kept under laboratory conditions to observe any pathogenic or parasitic microbiota interacting with larvae. Results: A total of eleven microbiota species (Canthocamptus staphylinus, Canthocamptus microstaphylinus, Parastenocaris brevipes, Lepadella ovalis, Lepadella patella, Rotatoria rotatoria, Rotatoria macrura, Asplanchna brightwelli, Trichocerca rattus, Euglena variabilis, and Flagilaria capucina) belonging to four (4) phyla (Arthropoda, Rotifera, Euglenozoa, and Ochrophyta) and 8 microbiota species belonged to four phyla (Arthropoda, Rotifera, Euglenozoa, and Ochrophyta) were identified from Ae. aegypti and Ae. albopictus breeding habitats respectively. There was a higher percentage (54.54%) of larval habitats positive for the secondary vector Ae. albopictus than through the primary vector Ae. aegypti in the Gampola urban area indicating higher possibility of transmitting the dengue virus through the secondary vector. However, no pathogenic or parasitic ciliates on mosquito larvae were encountered in the present study. Those findings may be due to sampling maingly from temporary container-type breeding habitats. Conclusions: The relative distribution of microbiota associated with mosquito species differed significantly among Ae. aegypti and Ae. albopictus. The overall findings of this study could help in implementing novel eco-friendly vector-control strategies in the study area.","PeriodicalId":8559,"journal":{"name":"Asian Pacific journal of tropical medicine","volume":"16 1","pages":"363 - 370"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Pacific journal of tropical medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/1995-7645.380722","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To determine the diversity of microbiota associated with different breeding habitats of dengue vector mosquitoes Aedes (Ae.) aegypti and Ae. albopictus and to identify any parasitic, epibiont, pathogenic, competitive or predatory species. Methods: Sampling was performed from a variety of breeding habitats using dipping, pipetting and siphoning techniques. Microbiota in water samples were preserved using Rose Bengal solution and Lugol’s iodine, and were identified. Live samples of microbiota were kept under laboratory conditions to observe any pathogenic or parasitic microbiota interacting with larvae. Results: A total of eleven microbiota species (Canthocamptus staphylinus, Canthocamptus microstaphylinus, Parastenocaris brevipes, Lepadella ovalis, Lepadella patella, Rotatoria rotatoria, Rotatoria macrura, Asplanchna brightwelli, Trichocerca rattus, Euglena variabilis, and Flagilaria capucina) belonging to four (4) phyla (Arthropoda, Rotifera, Euglenozoa, and Ochrophyta) and 8 microbiota species belonged to four phyla (Arthropoda, Rotifera, Euglenozoa, and Ochrophyta) were identified from Ae. aegypti and Ae. albopictus breeding habitats respectively. There was a higher percentage (54.54%) of larval habitats positive for the secondary vector Ae. albopictus than through the primary vector Ae. aegypti in the Gampola urban area indicating higher possibility of transmitting the dengue virus through the secondary vector. However, no pathogenic or parasitic ciliates on mosquito larvae were encountered in the present study. Those findings may be due to sampling maingly from temporary container-type breeding habitats. Conclusions: The relative distribution of microbiota associated with mosquito species differed significantly among Ae. aegypti and Ae. albopictus. The overall findings of this study could help in implementing novel eco-friendly vector-control strategies in the study area.
期刊介绍:
Asian Pacific Journal of Tropical Medicine (ISSN 1995-7645 CODEN: APJTB6), a publication of Editorial office of Hainan Medical University,is a peer-reviewed print + online Monthly journal. The journal''s full text is available online at http://www.apjtm.org/. The journal allows free access (Open Access) to its contents and permits authors to self-archive final accepted version of the articles on any OAI-compliant institutional / subject-based repository.
APJTM aims to provide an academic communicating platform for international physicians, medical scientists, allied health scientists and public health workers, especially those of the Asia-Pacific region and worldwide on tropical medicine, infectious diseases and public health, and to meet the growing challenges of understanding, preventing and controlling the dramatic global emergence and re-emergence of infectious diseases in the Asia-Pacific.
The journal is proud to have an international and diverse editorial board that will assist and facilitate the publication of articles that reflect a global view on tropical medicine, infectious diseases and public health, as well as emphasizing our focus on supporting the needs of public health practitioners. The APJTM will allow us to seek opportunities to work with others who share our aim, and to enhance our work through partnership, and to uphold the standards of our profession and contribute to its advancement.