Sunny Kumar Poguluri , Dongeun Kim , Yeonbin Lee , Jeong-Heon Shin , Yoon Hyeok Bae
{"title":"Design optimization of asymmetric wave energy converter using artificial neural network model","authors":"Sunny Kumar Poguluri , Dongeun Kim , Yeonbin Lee , Jeong-Heon Shin , Yoon Hyeok Bae","doi":"10.1016/j.ijnaoe.2023.100529","DOIUrl":null,"url":null,"abstract":"<div><p>The present study aims to improve the mean extracted power of a Wave Energy Converter (WEC) by mapping the parameters of its ballast weight and position, wave frequency, viscosity, and Power Take-Off (PTO) damping using an Artificial Neural Network (ANN) model. A total of 25 types of WEC rotors are designed with varying ballast weights and positions. The hydrodynamic coefficient and response of each rotor are determined using linear potential theory and viscous damping is estimated using computational fluid dynamics. The optimal design parameters are obtained by applying the trained model to a large randomly generated input dataset and the prediction output is evaluated to determine the best design parameters. According to the findings of the study, a well-trained model can predict and adopt to the nonlinear behavior of the given dataset as well as provide the optimal design parameters for the selected pitch-type WEC rotor.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"15 ","pages":"Article 100529"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678223000183","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2
Abstract
The present study aims to improve the mean extracted power of a Wave Energy Converter (WEC) by mapping the parameters of its ballast weight and position, wave frequency, viscosity, and Power Take-Off (PTO) damping using an Artificial Neural Network (ANN) model. A total of 25 types of WEC rotors are designed with varying ballast weights and positions. The hydrodynamic coefficient and response of each rotor are determined using linear potential theory and viscous damping is estimated using computational fluid dynamics. The optimal design parameters are obtained by applying the trained model to a large randomly generated input dataset and the prediction output is evaluated to determine the best design parameters. According to the findings of the study, a well-trained model can predict and adopt to the nonlinear behavior of the given dataset as well as provide the optimal design parameters for the selected pitch-type WEC rotor.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.